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CHAPTER 1 BACKGROUND AND SIGNIFICANCE 

1.1 Neuroblastoma 

The second most common cause of death in children from ages 1-14 in the 

United States is cancer (Jemal, A. et al., 2008).  8-10% of all pediatric cancers are 

neuroblastoma, however it accounts for about 15% of all cancer deaths in children 

(Cotran, R. S. et al., 1994; Howman-Giles, R. et al., 2007).  There are 400-650 new 

diagnoses in the United States each year ("What Are the Key Statistics About 

Neuroblastoma?," 2009; Young Jr, J. L. et al., 1986).  Neuroblastoma is most common 

in infants and toddlers.  In approximately half of all cases, children begin to show 

symptoms before age 2, and 90% of cases present by 5 years old (Howman-Giles, R. et 

al., 2007).   

Neuroblastoma develops in neural cells of the sympathetic nervous system 

("What is Neuroblastoma," 2009) which are derived from the neural crest, an 

embryologic structure (Jessen, K. R. Mirsky, R., 2005).  The malignant immature 

developing neural cells are called neuroblasts (neural = nerve, blast = immature).   

The sympathetic nervous system is part of the autonomic nervous system, 

meaning that it is controlled automatically, or without conscious input.  The sympathetic 

nervous system runs throughout the body, and consists of nerve cells (neurons) and 

glial cells.  Glial cells support neural cells by performing several important functions, 

including myelinating nerve axons, releasing neurotransmitters, and forming connective 

tissue to hold neurons in place.  Detailed reviews of the origin, formation, and function 

of glial cells of the peripheral nervous system are available from many sources (Jessen, 

K. R. Mirsky, R., 2005).  
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Just over 1/3 of neuroblastomas are found in the medulla of the adrenal gland, 

which contains sympathetic nervous system glial cells derived from the neural crest 

("What is Neuroblastoma," 2009).  Another 1/3 of neuroblastomas are found in the 

sympathetic ganglia and sympathetic chain elsewhere in the abdomen, and the rest can 

be found in the sympathetic ganglia of the chest, neck, and pelvis (Orkin, S. H. et al., 

2009). 

1.1.1 Neuroblastoma Diagnosis 

Symptoms of neuroblastoma vary based on where the tumor is located.  When 

the tumor is found in the abdomen, symptoms include an abdominal mass which may 

be accompanied by pain or fullness.  Other symptoms such as swelling or hypertension 

can be caused by compression of local vessels.  When neuroblastoma metastasizes, 

frequent symptoms are bone and joint pain, fever, failure to thrive,  bruising, low white 

blood cell levels, and proptosis (eye dislocation) or periorbital ecchymoses (raccoon 

eyes) which can both be caused by metastasis to the periorbital bones.  Another 

symptom of neuroblastoma is increased levels of catecholamine byproducts in the urine 

caused by increased release of neurotransmitters by glial cells.  Opsoclonus-myoclonus 

syndrome and vasoactive intestinal peptide syndrome are two paraneoplastic 

syndromes which are associated with neuroblastoma (Orkin, S. H. et al., 2009). 

While a suspected diagnosis of neuroblastoma can be made based on a patient’s 

symptoms, the only way to make a definite diagnosis is to perform a biopsy and 

examine the tumor cells using histology or other pathology methods.  To look at the 

histology, the pathologist cuts a thin slice of tissue (~10 microns) and mounts it on a 

clear glass slide.  The tissue is then stained with hematoxylin and eosin (H&E).  
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Hematoxylin binds to nucleic acids within the cell nucleus and stains them blue.  

Likewise, eosin stains the cytoplasm pink.  Once the stained tissue sample dries, the 

pathologist can view it under a microscope to examine the cellular behavior within the 

tumor.  Remaining portions of the tumor are saved and may be used for other pathology 

tests, if a conclusive diagnosis cannot be made with histology alone, or if more detailed 

diagnostic information is required. 

The histology and aggressiveness of neuroblastoma varies from tumor to tumor.  

Representative histology images of neuroblastoma are shown in Figures 2.1 and 4.2.  

Some neuroblastomas are fully encapsulated, while others invade the surrounding 

tissue.  The most common histological appearance contains sheets of small, embryonic-

appearing cells that have dark blue nuclei, little cytoplasm, and indistinct cell walls 

(Cotran, R. S. et al., 1994).  This histologic appearance is similar to a class of childhood 

tumors called small round blue cell tumors.  This group of tumors includes 

neuroblastoma, Ewing sarcoma, rhabdomyosarcoma, and non-Hodgkin lymphoma.  

Tumors with this histology often require further testing including immunohistochemistry 

(Finegold, M. J. et al., 1983; Gregorio, A. et al., 2008), cytogenetics including 

fluorescence in situ hybridization (Taylor, C. et al., 1993), and polymerase chain 

reactions (PCR) (Chen, Q.-R. et al., 2007), or complementary DNA microarrays (Khan, 

J. et al., 2001) to confirm the diagnosis. 

 The second typical histology of neuroblastoma shows some differentiation.  

While the tumor is still predominantly composed of immature neuroblast cells, there are 

also some larger, differentiated cells.  Cell differentiation can be identified by the larger 
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cell size, larger nuclei and nucleolus, and higher amounts of cytoplasm (Cotran, R. S. et 

al., 1994).  

Ganglioneuroma is composed of similar cells to neuroblastoma, however its 

histologic appearance contains all differentiated cells which look like mature neurons or 

ganglion cells (Cotran, R. S. et al., 1994) instead of immature neuroblasts.  In this case, 

the tumor is benign.  In some cases, malignant neuroblastoma cells can mature to 

ganglioneuroma cells. 

Ganglioneuroblastoma is a condition between ganglioneuroma and 

neuroblastoma ("What is Neuroblastoma," 2009).  It contains a mixture of benign 

mature ganglion cells and malignant immature neuroblasts.  Because it still contains 

malignant cells, ganglioneuroblastoma is treated like neuroblastoma.  For the purposes 

of this document, ganglioneuroblastomas will simply be referred to as neuroblastomas. 

Following a positive diagnosis of neuroblastoma, the pathologist assigns several 

sub-classifications.  The tumor is given a stage from I-IV based on the spread of the 

tumor through the lymphatic system and the rest of the body.  A favorable or 

unfavorable assignment is also assigned based on the histology and the patient’s age, 

according to a methodology called the Shimada classification.  Tumor favorability is 

used to determine the patient’s prognosis, as well as to predict the optimal treatment 

plan for each patient.  The histologic factors included in identifying the favorability 

include the degree of maturation of the tumor cells, the presence or absence of stromal 

cells (connective tissue), and the ratio of cells undergoing mitosis or karyorrhexis.  

Section 5.1 explains tumor favorability based on the Shimada classification and other 

prognostic markers of neuroblastoma in depth.  
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Additionally, the pathologist may test the genetic profile of the tumor to see if it 

displays genetic features which are associated with a positive or poor prognosis.  These 

sub-classifications are further described in Chapters 5 and 7. 

1.1.2 Screening for Neuroblastoma  

Neuroblastoma has no major risk factors.  Some studies show only 1-2% of 

cases are hereditary ("What are the Risk Factors for Neuroblastoma?," 2009), but other 

sources say as many as 20% of cases may be due to hereditary factors (Cotran, R. S. 

et al., 1994).  Neuroblastomas may be caused by neuroblast cells which do not fully 

mature during fetal development due to some type of genetic mutation ("Do We Know 

What Causes Neuroblastoma?," 2009).  The MYCN oncogene is over expressed in 

many neuroblastomas, and the TrkA tumor suppressor gene is under expressed in 

many neuroblastomas.  There are no known causes for the genetic changes which 

occur in neuroblastoma. 

Non-invasive or minimally invasive screening methods have had high success 

rates in detecting other types of cancer. These screening techniques tend to have lower 

sensitivity and high specificity.  Truth tables are often used to calculate sensitivity and 

specificity, as shown in Table 1.1.  Sensitivity is defined as the number of true positives 

divided by the sum of true positives and false negatives, while specificity is defined as 

the number of true negatives divided by the sum of true negatives and false positives. 

 

 Actual Diagnosis 
Positive Negative 

Predicted 
Diagnosis 

Positive True Positive False Positive 
Negative False Negative True Negative 

Table 1.1 : Truth table for calculation of sensitivity and specificity 
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High specificity is important so that there are no false negatives (the test misses 

a true cancer case).  Sensitivity relates to the number of true positives detected, so 

lower sensitivity means that not all cancer cases are detected with the given test.  An 

added benefit of screening tests is that they can reduce the mortality rate of the cancer 

for which they are screening (Mandel, J. S. et al., 1993), although this is not always the 

case (Olsen, O. Gøtzsche, P. C., 2001).  Examples of widely accepted screening tests 

are: 

• The papanicolaou cervical smear test (PAP smear) is used to detect cervical 

cancer with 30-87% sensitivity and 86-100% specificity (Nanda, K. et al., 2000). 

• Mammography is used to detect breast cancer with approximately 75% 

sensitivity and approximately 88% specificity (Houssami, N. et al., 2003). 

• Fecal occult blood testing to detect colon cancer or other disease of the anus had 

12-82% sensitivity and 95% specificity in one study (Nakama, H. et al., 1997), but 

results have been significantly lower in other studies (Winawer, S. J., 2007).  

Annual screening instead of sporadic screening can increase detection rates. 

 

More than 35 years ago, researchers in Japan noticed that there was an increase 

in the catecholamines homovanillic acid (HVA) and vanillymandelic acid (VMA) in the 

urine of patients with neuroblastoma.  Figure 1.1 briefly describes the conversion of 

tyrosine to epinephrine and norepinephrine (Vuguin, P. M., 2009). Epinephrine and 

norepinephrine are then converted to VMA and HVA.  Typically, the release of 

norepinephrine and epinephrine is governed by the sympathetic nervous system.  In the 

case of neuroblastoma, ganglia within the tumor can synthesize catecholamines, and 
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release can be triggered by physical or chemical triggers outside of the sympathetic 

nervous system.  

Figure 1.1 : Conversion from tyrosine to norepinephrine and epinephrine
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medical intervention ("What is Neuroblastoma," 2009).  This is called stage 4S 

neuroblastoma. 

In other cases, the immature cancer cells can develop into mature ganglion or 

nerve sheath cells, and the neuroblastoma as a whole develops into a ganglioneuroma.  

This is also significant because ganglioneuroma is a benign condition and poses 

significantly fewer risks to the patient, whereas neuroblastoma is a malignant condition.  

Typically, however, neuroblastoma must be treated.   

1.2 Raman Spectroscopy 

1.2.1 Raman Scattering 

The following series of equations can be used to describe the relationship 

between energy, wavelength, frequency, and wavenumber in radiating light.   

E = h ν 

λ = c / ν 

σ = ν / c = 1 / λ  

The energy (E) is equal to Planck’s constant (h  6.626 × 10-34 m2 kg / s) multiplied 

by the frequency (ν) of the light.  The wavelength of the light is equal to the speed of 

light (c  3* 108 m/s) divided by the frequency.  Finally, the wavenumber (σ) is equal to 

the frequency divided by the speed of light, or the inverse of the wavelength. 

Typically, when light is incident on a molecule, it interacts only with the electron 

cloud surrounding the molecule, and there is only a tiny energy interaction between the 

electrons and the incident light.  This interaction is very unstable.  The molecule quickly 

returns back to its original state, and the light is scattered at its original wavelength and 

frequency.  This is elastic scattering known as Rayleigh scattering (Smith, E. Dent, G., 
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2005).  In rare cases, however, the photon (unit of light energy) interacts with the 

nucleus, causing a shift in the vibration of the nucleus.   

Infrared spectroscopy is a vibrational spectroscopy technique complimentary to 

Raman spectroscopy.  It measures the change in the dipole moment of a molecule.  

Molecules which have no net dipole moment, however, cannot be measured using 

infrared spectroscopy.  Figure 1.2 illustrates this concept.  The left hand molecule is 

infrared-active because the net dipole moment can be changed while the right hand 

molecule is infrared-inactive because there is no net dipole moment.  Therefore, there 

can be no shift in the dipole moment. 

Complimentary to infrared spectroscopy, Raman spectroscopy measures the 

resulting change in polarizability caused by interaction of the incident light with the 

nucleus.  Polarizability is the tendency of the electron cloud to distort caused by the shift 

in the dipole moments.  While Infrared spectroscopy cannot detect the presence of the 

right-hand molecule in Figure 1.2, note that the same molecule could be measured 

using Raman spectroscopy, as shown in Figure 1.3. 

 

Figure 1.2 : Infrared-active and inactive molecules 
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There are two types of vibrational scattering.  In Stokes scattering, some of the 

energy of the incident photon is absorbed by the molecule.  Due to conservation of 

energy, the loss in energy of the scattered photon from the incident photon is equal and 

opposite to the energy change of the shift in the dipole moment.   

 

Figure 1.3 : Changes in polarizability caused by shifting dipole moments. 

 

Anti-Stokes scattering occurs when the molecule is already in an excited 

vibrational state.  In this case, the scattered photon absorbs some of the energy from 

the molecule as it returns to its ground state.  The scattered photon, then, has a higher 

energy and shorter wavelength than the incident photon.  Note that Stokes and anti-

Stokes scattering result in a wavelength shift due to the change in energy of the test 

molecule, whereas Rayleigh scattering has no shift in wavelength because there is no 

vibrational change within the molecule.  Figure 1.4 shows the energy diagram for 

Rayleigh, Stokes, and anti-Stokes scattering. 
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Figure 1.4 : Anti-Stokes, Stokes, and Rayleigh scattering. 

 

Typically, most of the molecules within a test sample will be at the ground state, 

rather than an excited state.  Therefore, Stokes scattering is far more common than 

anti-Stokes scattering.  For that reason, most Raman instrumentation is only setup to 

measure Stokes scattering.  Even measurement of Stokes scattering posed a large 

challenge for decades, however, because only about 1 in 107 incident photons trigger 

the Raman effect.  Current systems use single-wavelength lasers as excitation sources, 

sensitive charge coupled devices to count the scattered photons, and advanced 

computer processing to analyze data.  The combination of these advances make 

Raman spectroscopy a reasonable tool for biological applications. 

For a given particle, it is possible to theoretically predict the change in 

polarizability (α).   

α = p / �� 
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Polarizability is defined as the ratio between the dipole (p – calculated in general 

as the integral of the charges multiplied by the distance) of the molecule and the electric 

field of the incident light (���.  The electric field of the incident light is defined as 

�� � ��� cos	 2 � ν t� 

where ν is the frequency of the light, t is time, and E0 is the initial electric field.  

The polarizability is defined as  

� � �� � ���� cos	2 � ���� �� 

where νvib is the vibrational frequency of the incident molecule.  These two terms 

can be multiplied to calculate the dipole (Colthup, N. B. et al., 1990): 

p = 
������

�
�cos�2 � � 	� � ������ � cos�2 � � 	�  ������! 

1.2.2 The Raman Spectrum 

Quantum mechanics states that a molecule can only vibrate a specific number of 

ways.  Linear molecules containing N atoms have 3N-5 modes, and nonlinear 

molecules have 3N-6 vibration modes.  Based on the change in energy of the 

vibrational frequency, the wavelength of the scattered photon can be calculated.  For a 

given molecule, the exact Raman shift in wavenumbers can be calculated using the 

formula 

ω = 
#

$�%&�'(%)
 

#

$*&+))(,('
 

A Raman spectrum is the plot of the wavenumbers on the x-axis versus the count 

on the y-axis.  The y-axis represents how many Raman shifts were measured.  Because 

each molecule has a unique set of possible vibrations, a single molecule can be 

identified based on the wavelength shifts of the incident light (wavenumber).  When a 

sample is composed of different types of molecules, there will be peaks at several 
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wavenumbers.  The relative height of the peaks represents the relative ratios of each 

molecule within the sample. 

Using known biochemicals to establish known peaks, Raman spectroscopy can 

provide information about the underlying biochemistry of a sample.  Each chemical has 

a characteristic Raman peak or combination of Raman peaks.  Some chemicals have 

overlapping peak regions.  Analysis of Raman peaks becomes more and more 

complicated as more and more chemicals are added to a sample (Socrates, G., 2001).  

Raman peaks for a given chemical may shift slightly based on the characteristics of the 

other chemicals it is surrounded by (Socrates, G., 2001). 

1.2.3 Raman Spectrometer 

Because the Raman effect is so small (approximately 1 in 107), specialized 

instrumentation is required to obtain efficient Raman measurements.  Figure 1.5 shows 

a simplified schematic of a Raman spectrometer.  A laser source is used to provide high 

power light at a specific wavelength with a highly focused beam.  The beam is focused 

on the sample through the microscope lens.  The lens then collects the scattered light.  

It passes through a notch filter which removes all the Rayleigh scattered light of the 

same wavelength.  It is then focused on a grating which separates all the wavelengths 

of light, and then focused on a charge coupled device detector (CCD).  The CCD counts 

the number of photons at each wavelength and sends the information to the computer.  
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Figure 1.5 : Raman spectrometer schematic 

 

All experiments described here were performed using a Renishaw In-Via Raman 

spectrometer using a 500 mw 785 nm GaAs laser excitation source and 1200/mm 

grating.  The system resolution is 3 cm-1. 

1.2.4 Analysis Methods Used in Raman Diagnostics 

1.2.4.1 Preprocessing 

Following Raman measurement, a two-column text file is created by the 

measurement software.  The first column contains the wavenumbers measured, and the 

second column contains the number of photons counted at each wavenumber.  Before 

any processing can be done, however, files must be pre-processed to standardize the 

spectra. 

 In-house automated pre-processing software is used to remove cosmic rays, 

noise and tissue fluorescence, and then normalize data on a scale from 0 to 1 (Cao, A. 

et al., 2007).  Wavelet filtering is used to remove noise and smooth the data. 
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For fluorescence removal, the software matches a polynomial background to 

local minima along the spectra.  The software was programmed to identify which order 

of polynomial best fit each spectrum based on its fluorescence pattern.  Figure 1.6 

shows two example spectra plotted before and after preprocessing.  Note that the 

underlying fluorescence pattern is different between the two spectra, and the 

background subtraction was adjusted accordingly for each. 

 

Figure 1.6 : Examples of Raman spectra before and after preprocessing. 

 

Data is stored on a secure online server until processing.  An in-house database 

stores information about the files, including the date collected and measurement 

parameters, as well as the diagnosis and notes made by the pathologists.  This 

database was described extensively in previous work (Weber, R. E., 2007). 
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1.2.4.2 Data Analysis 

Several options exist for analyzing and classifying Raman spectra, including 

neural networks (de Paula, A. Sathaiah, S., 2005; Gniadecka, M. et al., 2004; Weber, R. 

E., 2007), principal component analysis (Frausto-Reyes, C. et al., 2005; Guicheteau, J. 

et al., 2008; Kawabata, T. et al., 2008; Sato-Berru, R. et al., 2007; Ye, Z. Auner, G., 

2004a), and discriminant function analysis (Brown, K. L. et al.; Jarvis, R. Goodacre, R., 

2004; Kawabata, T. et al., 2008), amongst other methods (Krafft, C. et al., 2009; Ye, Z. 

Auner, G., 2003, 2004b).  Previous work showed good agreement between neural 

network analysis and discriminant function analysis when both were performed on the 

same dataset (Weber, R. E., 2007). 

Principal component analysis (PCA) is a technique which can be used to 

compress the data set from many variables to a manageable set of 20 or less.  PCA 

rotates the data in such a way that the new first variable (component) represents the 

maximum variability within the dataset.  The second component explains the next-most 

variability, and it is orthogonal to the first component.   The components continue in this 

pattern until all the variability is explained.  The final number of principal components is 

equal to the original number of variables; however, the only significant components will 

be at the beginning of the dataset.  A cutoff can be assigned so those only the variables 

which explain X% new variance (example: .05% of variance) are saved.  This allows the 

data to be condensed from thousands of variables to a much smaller set which often 

contains 75% of the variance or more.  In depth description of PCA is available in 

several texts (Jolliffe, I. T., 1986) (Geladi, P. Kowalski, B. R., 1986; Stevens, J. P., 
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2002; Tabachnick, B. G. Fidell, L. S., 2007), and description of PCA used for analysis of 

Raman spectra is also available (Dai, H., 2005). 

While PCA is a helpful tool for data compression, it is not an ideal diagnostic tool.  

Discriminant function analysis (DFA) is the classification technique used for all 

experiments described here.  While Raman spectroscopic data often does not meet the 

statistical requirements assumed for DFA (Klecka, W. R., 1980), it has been applied to 

several types of Raman data (Brown, K. L. et al.; Kast, R. E. et al., 2008; Pandya, A. K. 

et al., 2008; Wills, H. et al., 2009b).  PCA components can be used as input to 

discriminant function analysis, or a combination of peak data can be used as input.  A 

benefit of DFA is that the analysis results allow the user to determine which variables in 

the analysis are significant from which variables are noisy or insignificant.  Like PCA, 

DFA rotates the dataset, aligning the most variation along the first variable (canonical 

function), the second most variability along the second variable, etc.  Data points are 

plotted along the rotated variables.   

When performing analysis, a ‘gold standard’ diagnosis is assigned to each 

spectrum.  The gold standard diagnosis is assigned by the pathology staff as the 

‘known’ diagnosis based on the tissue histology and other methods when necessary.  

To ensure accuracy of the gold standard diagnosis, two or more pathologists review 

each case.  The DFA model is created based on the known gold standard diagnosis.  

For each diagnosis group, a centroid point is calculated based on the average location 

of all points within that group.  Diagnosis of new spectra, then, is based on the closest 

centroid.  Again, there are many books available which describe DFA in depth (Klecka, 

W. R., 1980; Stevens, J. P., 2002; Tabachnick, B. G. Fidell, L. S., 2007).  While DFA is 
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the classification methodology used in this work, neural networks, logistic regression, or 

other methods may be used with Raman spectroscopic data

Classification results provide 

Sensitivity and specificity are calculated at the spectral level based on these results, 

using pathology diagnosis as the gold standard.  

calculated, the same results are calculated for each tissue.  Each tissue’s diagnosis is 

made based on the majority classification

the data processing methodology.

Figure 1.7 : Data analysis flowchart

 

1.2.5 History of Raman Spectroscopy as a Biological Detection Tool

Raman spectroscopy was used in biological applications

identify amino acids and fatty acids, among other compounds 

was not commonly used as a laboratory practice, however, until commercial lasers, 

spectrometers, and computers became available in the 1960’s 
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the classification methodology used in this work, neural networks, logistic regression, or 

with Raman spectroscopic data. 

Classification results provide a predicted diagnosis for each individual spectrum.  

Sensitivity and specificity are calculated at the spectral level based on these results, 

as the gold standard.  Once spectra-level results are 

calculated, the same results are calculated for each tissue.  Each tissue’s diagnosis is 

classification of the individual spectra.  Figure 1.7 outlines 

hodology. 

: Data analysis flowchart 

History of Raman Spectroscopy as a Biological Detection Tool

Raman spectroscopy was used in biological applications as early as 1936 to 

identify amino acids and fatty acids, among other compounds (Edsall, J. T., 1936)

was not commonly used as a laboratory practice, however, until commercial lasers, 

spectrometers, and computers became available in the 1960’s (Gremlich, H.
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membranes from normal and cancerous hamster lymphocytes using Raman 

spectroscopy (Verma, S. P. et al., 1977).  This marked the beginning of the modern era 

of Raman spectroscopy for tissue diagnostics. 

In the past 20 years, Raman spectroscopy has been applied to several whole-

tissue cancer diagnostic applications, including breast (Frank, C. J., 1994; Haka, A. S. 

et al., 2002; Haka AS, V., Gardecki, Nazemi, Lyons, Hicks, Fitzmaurice, Dasari, Crowe, 

Feld, 2006; Haka, S.-P., Fitzmaurice, Crowe, Dasari, Feld, 2005; Manoharan, R. et al., 

1998; Redd, D. C. B. et al., 1993), brain (Krafft, C. et al., 2003; Wolthuis, R. et al., 

2001), cervical (Mahadevan-Jansen, A. et al., 1998a; Mahadevan-Jansen, A. et al., 

1998b; Utzinger, U. et al., 2001), thyroid (Teixeira, C. et al., 2009), pancreatic (Pandya, 

A. K. et al., 2008), bladder (Stone, N. et al., 2002), lung (Draux, F. et al., 2008; Huang, 

Z. et al., 2003b; Kaminaka, S. et al., 2001), kidney (Lieber, C. Kabeer, M.; Wills, H. et 

al., 2009b), prostate (Crow, P. et al., 2003a), esophageal (Kendall, C. et al., 2003; Li, X. 

et al., 2004; Shetty, G. et al., 2006a), and skin cancer (Fendel, S. Schrader, B., 1998; 

Gniadecka, M. et al., 1997; Hata, T. R. et al., 2000; Johansson, C. K. et al., 1999), 

amongst others.   

Once Raman spectroscopy was proven as a diagnostic technique, researchers 

began developing portable tools for Raman spectroscopic measurement in-vivo 

(Mahadevan-Jansen, A. et al., 1998b; Motz, J. T. et al., 2005; Motz, J. T. et al., 2004; 

Shim, M. G. et al., 1999; Utzinger, U. Richards-Kortum, R., 2003).  Rather than trying to 

miniaturize an entire spectrometer, however, these designs focus on development of 

fiber optic delivery and collection fibers for Raman measurement.  They still require 

attachment to a larger spectrometer which must be within the length of the fiber probe.  
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Several studies used portable fiber optic devices to measure Raman spectra from 

easily-accessible tissues, including skin (Caspers, P. J. et al., 2003; Fendel, S. 

Schrader, B., 1998) and cervical tissue (Robichaux-Viehoever, A. et al., 2007).  In 2006, 

the first in-vivo Raman measurement of breast cancer resection surgery was published 

(Haka, A. S. et al., 2006a).   

Raman spectroscopy has also been used to measure individual cancer cells in 

many applications, including breast and cervical cancer (Yazdi, Y. et al., 1999), lung 

cancer (Draux, F. et al., 2008; Verrier, S. et al., 2004), prostate cancer (Crow, P. et al., 

2005a; Harvey, T. J. et al., 2008; Taleb, A. et al., 2006), leukemia and lymphoma 

(Chan, J. W. et al., 2008; Chan, J. W. et al., 2006), cervical cancer (Matthaus, C. et al., 

2007), liver cancer (Hawi, S. et al., 1996), and bladder cancer (Harvey, T. J. et al., 

2008).  It has also been used outside of cancer research.  In cellular studies, it has been 

used to measure cell death (Huang, Y. et al., 2005; Notingher, I. et al., 2002; Verrier, S. 

et al., 2004), cell proliferation (Short, K. W. et al., 2005), identify individual bacteria cells 

(Schuster, K. et al., 2000), identify specific biochemical constituents within a cell 

(Hellerer, T. et al., 2007; Matthaus, C. et al., 2007), identify immune cell activation 

(Brown, K. L. et al., 2009a, b; Mannie, M. D. et al., 2005).  Several studies have also 

been performed to identify ideal measurement parameters for cells in culture.  Research 

showed that the ideal collection wavelength for single cell measurements was near 785 

nm (Notingher, I. et al., 2002).  Lower wavelength lasers damaged cells, even at 

reduced power levels.  It was also found that cells which were dehydrated and then 

tested exhibited significant artifact (Mariani, M. M. et al., 2009; Mourant, J. et al., 2003).  
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Cells should instead be measured while suspended in an aqueous solution.  Third, 

water does not interfere with Raman signals because it vibrates symmetrically.  

Raman spectroscopy offers several distinct advantages as a diagnostic tool.  

First, it does not require any biomarkers or tags (Gremlich, H.-U. Yan, B., 2001).  

Second, Raman signals can be measured from a broad range of molecules (Gremlich, 

H.-U. Yan, B., 2001).  This offers a distinct advantage over infrared spectroscopy 

(Gremlich, H.-U. Yan, B., 2001). 

1.3 The Problem and Proposed Solution 

1.3.1 Raman Spectroscopy as a Diagnostic Tool for Neuroblastoma 

To accurately diagnose neuroblastoma, it must be distinguished from 

histologically similar tumors or geographically close tumors.  Current pathology methods 

are slow, and can be biased by the surgeon’s skill in removing the affected area, and 

the pathologist’s skill and experience in diagnosing a relatively rare pediatric neoplasm 

such as neuroblastoma.  Methods including immunohistochemistry (Finegold, M. J. et 

al., 1983; Gregorio, A. et al., 2008), cytogenetics (Taylor, C. et al., 1993), polymerase 

chain reactions (PCR) (Chen, Q.-R. et al., 2007), electron microscopy, and karotyping 

are often required in addition to traditional tissue staining and light microscopy.   

Once neuroblastoma is diagnosed, the aggressiveness of the tumor must be 

identified.  The Shimada classification is the gold standard method for diagnosing tumor 

favorability; however, it can vary based on the pathologist and the region of tissue under 

examination.  Other factors such as the genetic profile of the tumor may also be 

examined to determine aggressiveness and plan treatment. 
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Raman spectroscopy can be exploited as a non-biased, quick, and accurate 

method for cancer diagnosis.  A portable Raman instrument can be developed for 

biopsy use, or biopsy samples can be tested using a traditional desktop Raman 

spectrometer in the pathology laboratory.  We hypothesize that Raman can accurately 

identify neuroblastoma from other neural tumors and from histologically similar small 

round blue cell tumors.  Furthermore, we hypothesize that Raman spectroscopy can 

identify subtle characteristics of tumor aggressiveness such as favorability and 

amplification of key genes.  Even if a biopsy sample were tested in the pathology lab 

after resection, a thorough diagnosis could be provided within an hour of surgery, 

instead of waiting days using current pathological methods. 

1.3.2 Raman Spectroscopy as a Surgical Tool for Neuroblastoma 

When a tumor is removed, the surgeon removes a margin of normal-appearing 

tissue outside of where he or she thinks the tumor boundaries are.  The pathologist 

quickly cuts, stains, and views frozen sections of the margin tissue to ensure there are 

no remaining tumor cells and the whole tumor is removed.  This process takes 

approximately 20 minutes, and must be repeated if tumor cells are found within the 

margin.  Throughout this process, the surgeon and the patient’s family wait, while the 

patient is kept sedated in the operating room.   

If the pathologist’s initial review shows that there are no cancer cells in the tissue 

margin, the surgeon finishes the surgery.  However, the initial review by the pathologist 

is simply a best guess.  Over several days, the pathologist performs a more thorough 

review of the tumor margin to verify that there were no tumor cells.  In the case that 

tumor cells are found, the patient must have a second surgery to remove the remaining 
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cancer cells.  This is expensive and puts the patient at a higher risk.  Figure 

flow chart of the current surgical and pathology system used.

We suggest that Raman spectroscopy can be used as an alternative to the 

frozen section diagnosis in tumor section.  Engineers are developing a hand

Raman spectrometer for surgical use which can be used in open surgery, laparoscopic 

surgery, or attached to a robot arm for robotic surgery.  Unlike other 

spectroscopy probe designs, this 

spectrometer, rather than attaching a long fiber optic probe to a traditional spectrometer.  

 

Figure 1.8 : Following tumor resection, a pathologist performs a quick analysis, then a 
more detailed analysis.  If tumor cells are found, more tissue must be removed.
 

Once the tumor is removed, the Raman probe can be used to scan the margin 

area for any remaining cells. When integrated with real time diagnostic and mapping 

software, this should provide an accurate 

20 minutes.    The portable Raman probe could even be attached to a surgical robot to 
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analysis of the margin following surgery, but we expect a much higher accuracy in 

diagnosing tumor margins.   

Figure 1.9 shows a schematic of our proposed methodology.

portable Raman probe can be used in a traditional open or laparoscopic surgery, or it 

can be attached to a robotic arm.  The probe will interface with 3

tumor area to scan the margin

clear margin, the surgery will end and the resected tissue will be sent to pathology for a 

full workup.  The rate of positive margins should be mu

because the Raman probe should be able to obtain more detailed biochemical 

information about the sample.

be able to identify abnormal, potentially pre

identified by pathology (Kast, R. E. et al., 2008)

 

Figure 1.9 : Proposed Raman system for margin assessment should provide quicker 
results with higher accuracy 
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fully automate the scanning process.  A pathologist would still perform a thorough 
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shows a schematic of our proposed methodology.  
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ed to a robotic arm.  The probe will interface with 3-D mapping of the 

tumor area to scan the margin (Reisner, L. A. et al., 2007).  Once scanning shows a 

clear margin, the surgery will end and the resected tissue will be sent to pathology for a 
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because the Raman probe should be able to obtain more detailed biochemical 

.  Previous studies showed that Raman spectroscopy may 
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1.4 Scope of Work 

The goal of this research is to develop a detailed classification methodology for 

neuroblastoma.  The two major steps of this goal are: 

1) Use Raman spectroscopy to develop a methodology for identifying neuroblastoma 

from normal adrenal gland tissue, other neural diseases, and histologically similar 

small round blue cell tumors.    

2) Use Raman spectroscopy to identify the prognostic markers of neuroblastoma to 

provide specific diagnostic details and allow rapid development of an optimal 

treatment plan. 

The following hypotheses were developed based on this research goal: 

1) Raman spectroscopy can distinguish neuroblastoma from other tissues, including 

histologically similar small round blue cell tumors and other pathologies of the 

adrenal gland, using standard histology as the gold-standard for diagnosis. 

2) Raman spectroscopy can identify prognostic markers of the disease (tumor markers, 

histology, genetics, etc) to provide specific details about the diagnosis and optimal 

treatment plan.  

1.5 Research Plan 

This dissertation is divided into three main segments: identification of 

neuroblastoma tumor tissue, identification of prognostic markers of neuroblastoma, and 

conclusions and future work.   

1.5.1 Identification of Neuroblastoma Tumor Tissue 

Chapter 2 examines identification of neuroblastoma from normal adrenal gland 

tissues and from other peripheral nervous system tumors, including ganglioneuroma, 
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peripheral nerve sheath tumor, and pheochromocytoma.  This work was originally 

published in the Journal of Pediatric Surgery (Rabah, R. et al., 2008).   

In Chapter 3, neuroblastoma is compared to the same types of tissues; however, 

tumors from a frozen tumor bank were also included in the study.  Because 

neuroblastoma and the related tumors have such low occurrence, development of a 

robust tissue database would take many years.  If frozen tumors could be included, a 

database could be built more expediently.  This work was also originally published in the 

Journal of Pediatric Surgery (Wills, H. et al., 2009a).   

Chapter 4 compares neuroblastoma with the other common small round blue cell 

tumors, non-Hodgkin lymphoma, rhabdomyosarcoma, and Ewing sarcoma.  This work 

was accepted for publication in the June 2010 edition of the Journal of Pediatric Surgery 

(Kast, R. et al., Accepted for June 2010).   

1.5.2 Identification of Prognostic Markers 

Chapter 5 marks the beginning of the second portion of the dissertation: 

identification of prognostic factors associated with neuroblastoma.  In this chapter, 

favorable histology, unfavorable histology, and treated neuroblastoma are compared.  

This work was also included in the two Journal of Pediatric Surgery papers from 

Chapters 2 and 3 (Rabah, R. et al., 2008; Wills, H. et al., 2009b).  

Chapter 6 further expands on differentiation between favorable histology 

neuroblastoma, unfavorable histology neuroblastoma, and treated neuroblastoma, by 

including frozen, blinded tumor samples received from the Children’s Oncology Group, 

a national tumor bank.   
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Chapter 7 examines another prognostic factor associated with neuroblastoma: 

amplification of the MYCN gene.  A cell line which alters its gene expression level based 

on tetracycline treatment was used to model normal and amplified levels of MYCN.   

1.6 Novelty and Significance 

This work is novel because it is the first major study using Raman spectroscopy 

to diagnose a pediatric tumor in a human model.  Many Raman spectroscopic studies in 

the literature diagnose cancer in adult tissues, but this is the first investigation of 

neuroblastoma. 

Furthermore, most of the prognostic markers of cancer have not been examined 

in detail.  Adding this increased capability to Raman spectroscopic diagnosis will add a 

new degree of clinical relevance.  Raman spectroscopy could offer an immediate, 

objective evaluation of tumor aggressiveness, and provide immediate information 

regarding patient prognosis.  The two specific factors which will be examined are tumor 

histology and MYCN gene amplification. 

Raman spectroscopy could offer significant improvements over existing 

diagnostic techniques for neuroblastoma.  A methodology for real-time diagnosis would 

bring physicians one step closer to making immediate treatment decisions directly from 

the operating room.  When integrated into a biopsy needle or laparoscopic surgical 

probe, Raman spectroscopy could provide an immediate, accurate diagnosis.  This is 

especially significant for diagnosing small round blue cell tumors and identifying genetic 

amplification because existing diagnosis methods are expensive, subjective, or slow. 

Accurate diagnosis could prevent patients from undergoing unnecessary 

treatment.  Alternately, it could allow patients to begin treatment immediately based on 
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the real-time diagnosis.  Quick identification of prognostic markers will allow rapid, 

individualized treatment plans. 
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CHAPTER 2 IDENTIFICATION OF NEUROBLASTOMA FROM NEUR AL TUMORS 

2.1 Introduction 

Because neuroblastoma is derived from the neural crest, it can arise on 

sympathetic ganglia or on the sympathetic chain anywhere in the body.  About one third 

of neuroblastomas present on the adrenal gland because it is a common site of 

migration for cells derived from the neural crest ("What is Neuroblastoma," 2009).  This 

is the most common primary neuroblastoma site (Orkin, S. H. et al., 2009). 

Other tumors which can arise on neural tissue include ganglioneuroma, 

peripheral nerve sheath tumor, and pheochromocytoma.  While peripheral nerve sheath 

tumor and pheochromocytoma have unique histologies, ganglioneuroma is closely 

related to neuroblastoma. 

2.1.1 Ganglioneuroma 

As described in the introduction, ganglioneuroma is closely related to 

neuroblastoma (Cotran, R. S. et al., 1994).  It is composed of the same types of cells of 

neuroblastoma, except they are mature.  Ganglioneuroma is a benign condition, and 

usually requires no treatment.  In some cases, it may need to be removed if it causes 

secondary symptoms 

2.1.2 Nerve Sheath Tumor and Peripheral Nerve Sheath Tumor 

A nerve sheath tumor is a neural tumor, and a peripheral nerve sheath tumor is 

simply a nerve sheath tumor which is found in the peripheral nervous system.  There 

are several types of nerve sheath tumor, including Schwannoma, neurofibroma, and 

malignant peripheral nerve sheath tumor (Cotran, R. S. et al., 1994). 
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Schwannomas come from Schwann cells, which are found in the neural crest.  

Schwannomas are most commonly found on the eighth cranial nerve, but can be found 

on the other cranial nerves, in the dorsal roots of the spinal cord (and sometimes 

extending past the vertebral foramen), or at large nerve trunks which contain both motor 

and sensory nerves (Cotran, R. S. et al., 1994).  Schwannomas grow attached to 

nerves, however, they do not invade nerves; therefore, they can typically be separated 

from the nerve with relative ease, as long as the tumor capsule does not surround the 

nerve. 

Conversely, neurofibromas infiltrate the fascicles of the nerve, making it difficult 

to fully resect the tumor mass (Cotran, R. S. et al., 1994).  Neurofibromas can be found 

on any nerve, though they tend to be found in larger, communicating areas more than 

terminal branches of the nerve.  Neurofibromas consist of Schwannian cells, fibroblasts, 

and inflammatory cells.  Since the tumor invades the actual nerve, axons can also be 

found within neurofibromas. 

Malignant peripheral nerve sheath tumors are not caused by degeneration of 

Schwannomas, but they can be caused by degeneration of plexiform neurofibromas or 

they can occur spontaneously or as a result of radiation therapy (Cotran, R. S. et al., 

1994).  They are classified as sarcomas (tumor of soft tissue) and considered very 

malignant.  Tumor recurrence and metastasis are common in malignant peripheral 

nerve sheath tumors, and there is a poor prognosis.  Malignant peripheral nerve sheath 

tumors infiltrate both the host nerve as well as other local soft tissue. 



www.manaraa.com

31 

 

2.1.3 Pheochromocytoma 

Pheochromocytoma is a rare neoplasm which is found in the medulla of the 

adrenal gland in about 85% of cases and found on other paraganglia in the remaining 

15% of cases (Cotran, R. S. et al., 1994).  Less than 10% of adrenal 

pheochromocytomas are malignant, however 20-40% of non-adrenal 

pheochromocytomas are malignant.  Because benign and malignant tumors share 

nearly identical histology, the only way to verify malignancy is the presence of 

metastasis.   

Approximately 10% of pheochromocytomas come from familial syndromes, while 

the other 90% appear sporadically.  Pheochromocytoma is most common in those 

between 40 and 60 years old, however, pediatric occurrence is common in those with 

familial syndromes.  In the United States, the overall rate of pheochromocytoma is 1 in 

100,000; however, only 10-20% of those cases occur in children (Vuguin, P. M., 2009).  

Pheochromocytomas tend to occur in slightly older children than neuroblastoma, with 

the average age at diagnosis between 6 and 14 years. 

Like neuroblastoma, pheochromocytomas secrete epinephrine or 

norepinephrine, which lead to increased levels of catecholamines throughout the body 

and in the urine (Cotran, R. S. et al., 1994; Vuguin, P. M., 2009).  Catecholamine 

release is triggered by physical or chemical changes around the tumor, rather than 

neural stimulation, because pheochromocytomas are not innervated. Key symptoms of 

pheochromocytoma are hypertension, paroxysms (strong emotional outbursts), 

increased levels of urinary catecholamines, and circulatory problems caused by surging 
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levels of catecholamines, including pulmonary edema, heart attack, congestive heart 

failure, cerebral hemorrhage, and ventricular fibrillation (Cotran, R. S. et al., 1994). 

2.1.4 Research Goal 

The goal of this chapter is to determine whether Raman spectroscopy can 

distinguish between neuroblastoma, ganglioneuroma, peripheral nerve sheath tumor, 

pheochromocytoma, and normal adrenal gland. 

2.2 Materials and Methods 

2.2.1 Internal Review Board Approval 

All tissue-based studies described in this work were approved by the Wayne 

State University Internal Review Board Human Investigation Committee (IRB 

#0506002366).  Supporting documentation, including the protocol, 2009 continuation 

form for 2010, and a signed approval for the 2009 continuation are included in Appendix 

A.   

2.2.2 Data Collection 

Samples of neuroblastoma, ganglioneuroma, peripheral nerve sheath tumor, 

pheochromocytoma, and normal adrenal gland were collected fresh from the operating 

room from routine surgical procedures.  After arriving in the pathology lab, half of the 

sample was reserved for routine pathology.  The other half was used for Raman 

spectroscopy testing.  An experienced pathologist selected regions of normal tissue 

and/or tumor tissue for each sample.   

Raman testing was performed using the Renishaw Raman spectrometer using a 

20x magnification Leica objective.  At least twelve different points were measured on 

each sample, in case any single measurement was made over non-tumor area such as 
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vessels, fat, or inflammation.  Whenever a tissue was big enough and time allowed, 

more than twelve spectra were measured.  Each measurement consisted of 2 or 3 

accumulations of 10 seconds each over the range of 600-1800 cm-1.  This region is 

known as the fingerprint region.  Raman shifts for biological molecules, including 

proteins, amino acids, lipids, and carbohydrates are all found within this region, and it 

offers the most diagnostic information. 

Following Raman measurements, each sample was placed in 10% neutral 

buffered formalin to preserve the tissue structure, and later sent for routine histology 

processing.  Samples were embedded in paraffin by an experienced laboratory 

technician, and a 5 µm section was cut, mounted on a standard glass slide, and stained 

with hematoxylin-eosin.  The remaining tissue was preserved in paraffin.  In the case of 

classification disagreement between the control sample and the Raman-tested sample, 

or in disagreements between the pathologic diagnosis and Raman diagnosis, more 

hematoxylin-eosin slides were made for review from the preserved paraffin-fixed 

sample. 

All tissue slides were reviewed by two or more experienced pediatric 

pathologists, who agreed on the diagnosis of the tissue.  In cases of neuroblastoma, 

pathologists also identified whether the tumor was favorable or unfavorable based on 

the Shimada classification, or whether the tissue was treated.  Samples which displayed 

extensive damage due to trauma (such as cauterization during surgery) were excluded 

from the study.  In some cases, just a few tumor cells were present in an area of 

otherwise normal tissue.  Samples with this characteristic were included in this study, to 

gauge the sensitivity and specificity of the Raman technique. 
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2.2.3 Data Processing 

Data was processed as described in section 1.2.4.  Appendix B provides a 

detailed statement of procedure protocol for data processing.  After pre-processing, 

each spectrum was visually examined.  Spectra which showed clear measurement 

errors, including spectra where measurement was stopped mid-measurement, spectra 

where the glass slide was measured instead of the tumor or out of focus measurements 

were deleted from the dataset.  For each group of tissues examined, the mean 

spectrum was calculated to get an overall understanding of the differences between 

tissue groups. 

Data was averaged into intervals of 2.25 cm-1 and imported into SPSS for 

analysis.  2.25 cm-1 was selected because it was the smallest interval size which 

allowed SPSS to perform principal component analysis.  This compressed the data from 

1310 variables to 534 variables.  Within SPSS, principal component analysis was used 

to reduce the dimensionality of the binned data set of 534 variables to 20 or less.  Next, 

discriminant function analysis was used to build a classification model.  Sensitivity (true 

positives / (true positives + false negatives)) and specificity (true negatives / (true 

negatives + false positives)) based on the gold standard diagnoses were used to judge 

the classification models.   

The results of discriminant function analysis were examined at the spectral level 

and the tissue level.  Because normal and tumor tissue are both heterogeneous, a given 

Raman spectrum may be representative of a pocket of fat, inflammation, or a vessel 

rather than tumor tissue.  Therefore, it would not be unexpected to have a misclassified 

spectrum in an analysis.  For this reason, a classification rule was developed for whole 
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tissues.  Each whole tissue’s classification was determined based on the classification 

of a majority of its spectra.  For example, in a sample with 12 measured spectra, if 

seven or more spectra were classified as ‘neuroblastoma’, the whole tissue was 

diagnosed as neuroblastoma.  Likewise, if six spectra were classified as neuroblastoma, 

three as normal, and three as ganglioneuroma, the overall tissue diagnosis of 

neuroblastoma was assigned.  Usually 12 spectra were measured per sample, but that 

number could be more if tissue tested was large or less if some spectra from the tissue 

were excluded from analysis.  Spectra were only excluded from analysis if they 

displayed clear signs of measurement error, including saturation, background signal of 

glass slide, or cut-off of data mid-measurement.   

2.3 Results 

2.3.1 Data Collected 

The data consisted of 698 spectra from 31 tissue samples as shown in Table 2.1.  

Within the neuroblastoma group of tumors, there were 106 spectra from 6 tissue 

samples of unfavorable histology neuroblastoma, 114 spectra from 5 cases of favorable 

neuroblastoma, and 82 spectra from 5 treated neuroblastomas.  As mentioned in the 

materials and methods section, at least twelve points were measured for each sample; 

however some samples were quite large and allowed significantly more measurements 

with no sample degradation.   
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Diagnosis Number of Samples Number of Spectra 
Normal adrenal gland 3 78 
Neuroblastoma 16 302 
Ganglioneuroma 5 189 
Nerve Sheath Tumor 6 117 
Pheochromocytoma 1 12 
Total  31 698 
Table 2.1 : Number of spectra and samples for adrenal gland, neuroblastoma, 
ganglioneuroma, nerve sheath tumor, and pheochromocytoma. 

 

2.3.2 Visual Examination of Raman Spectra 

The mean Raman spectrum of each tissue type and correlating representative 

histology images are shown in Figure 2.1.  As shown, there were clear differences in the 

histology from tissue to tissue which correlated to clear differences in the Raman 

spectra. Normal adrenal gland tissue was clearly different from each of the four types of 

tumors.  On visual inspection, normal tissues had higher peaks at 1102, 1160, and 1518 

cm-1, which correlates to a higher concentration of carotenoids in normal tissues 

(Schulz, H. et al., 2005).  These peaks are circled in the normal spectrum of Figure 2.1.  

Note that the carotenoid peaks at 1160 and 1518 cm-1 were absent from the mean 

spectra of every tumor type. 

Conversely, the tumor samples, especially ganglioneuroma and neuroblastoma 

had higher intensities at peaks which correlate to proteins, specifically 754, 853, 938, 

1002, 1300 through 1345, 1447, 1550, 1620, and 1660 cm-1. 

 



www.manaraa.com

37 

 

Figure 2.1:  Mean spectra of each tissue type with correlating histological images.  
Labeled circled peaks are areas of difference between tissue types.   
2.3.3  

2.3.4 Classification Results 

Neuroblastoma was separated from normal adrenal gland with 100% sensitivity 

(302/302 neuroblastoma spectra correctly identified) and 92.3% specificity (5/78 adrenal 

gland spectra correctly identified).  The five misclassified spectra came from two tissue 

samples.  In both cases, the misclassified spectra represented only a fraction of the 

overall spectra.  In the first sample, 3 of 22 spectra were misclassified, and in the 

second sample, 2 of 44 spectra were identified.  Using tissue level diagnosis, there was 

100% sensitivity (16/16 neuroblastoma tissues) and 100% specificity (3/3 normal 

adrenal gland tissues) in diagnosing between normal adrenal gland and neuroblastoma.  

Classification results for this analysis and the other two-group comparisons are 

summarized in Table 2.2. 
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 Normal AG v 
NB 

NB  
v GN 

Normal AG  
v GN 

NB  
V Pheo 

NB  
v NST 

 Sen Spec Sen Spec Sen Spec Sen Spec Sen Spec 
Spectral-
level  

100% 100% 96.3% 95.7% 100% 94.8% 100% 88.1% 79.5% 85.1% 

Tissue- 
level 

100% 100% 100% 100% 100% 100% 100% 100% 66.6% 87.5% 

Table 2.2 : Classification sensitivity and specificity results at the spectral and tissue level 
for each 2-group analysis (AG = adrenal gland, NB = neuroblastoma, GN = 
ganglioneuroma, Pheo = pheochromocytoma, NST = nerve sheath tumor, Sen = 
sensitivity, and Spec = specificity) 
 
 

Next, the separation between neuroblastoma and ganglioneuroma was 

examined.  Neuroblastoma was correctly identified from ganglioneuroma with 96.3% 

sensitivity (291/302 neuroblastoma spectra correctly identified) and 95.7% specificity 

(181/189 ganglioneuroma spectra correctly identified).  The eleven misclassified 

neuroblastoma were split between 3 tissues (2 of 18, 3 of 14, and 6 of 36 misclassified) 

and the eight misclassified spectra of ganglioneuroma were split between three tissues 

(1/55, 1 of 19, and 6 of 59 misclassified).  Using the tissue-level classification, 

neuroblastoma and ganglioneuroma were separated with 100% sensitivity (16/16 

neuroblastoma) and 100% specificity (5/5 ganglioneuroma).  These results are 

summarized in Table 2.2. 

Ganglioneuroma was separated from normal adrenal gland with 100% sensitivity 

(189/189 ganglioneuroma spectra correctly identified) and 94.8% specificity (74/78 

adrenal gland spectra correctly identified).  The four misclassified normal spectra came 

from two different tissues (2/22 and 2/55 spectra misclassified).  The tissue level 

classification was 100% sensitivity and 100% specificity, as shown in Table 2.2. 

A three-group analysis was performed between normal adrenal gland, 

neuroblastoma, and ganglioneuroma.  The results are shown in Table 2.3.  While each 
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these tissues were easy to distinguish in a two-group model, any of the three may be 

present in a clinical example.  Overall classification was 90%, with 91% of normal 

adrenal gland correctly identified, 87.1% of neuroblastoma correctly identified, and 

94.2% of ganglioneuroma spectra correctly identified. 

 
Classification Results a 

  Diagnosis Predicted Group Membership 

Total   Normal Neuroblastoma Ganglioneuroma 
Original Count Normal 71 6 1 78 

Neuroblastoma 0 263 39 302 
Ganglioneuroma 0 11 178 189 

% Normal 91.0 7.7 1.3 100.0 
Neuroblastoma .0 87.1 12.9 100.0 
Ganglioneuroma .0 5.8 94.2 100.0 

a. 90.0% of original grouped cases correctly classified. 
Table 2.3 : Three-group classification results for discrimination between normal adrenal 
gland, neuroblastoma, and ganglioneuroma. 

 

Figure 2.2 shows a plot of the discriminant function scores for the analysis.  

Normal adrenal gland spectra were represented in a single group, while there was some 

overlap between the neuroblastoma and ganglioneuroma groups. 

Finally, neuroblastoma was compared to peripheral nerve sheath tumor and 

pheochromocytoma.  Summarized results are shown in Table 2.2.  Neuroblastoma and 

peripheral nerve sheath tumor were separated with 79.5% sensitivity and 85.1% 

specificity.  At the tissue level, two neuroblastoma and two nerve sheath tumors were 

misclassified.  Neuroblastoma and pheochromocytoma were distinguished with 100% 

sensitivity and 81.1% specificity at the spectral level and 100% sensitivity and specificity 

at the tissue level.  Nerve sheath tumors and maturing neuroblastomas and 

ganglioneuromas both display a collagenous Schwannian stromal component.  On 

examination of the mean Raman spectra, nerve sheath tumors had higher intensities at 
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854, 938, 1003, 1447, and 1657 cm-1.  These peaks have all been associated with 

protein and collagen components (Shim, M. G. Wilson, B. C., 1997). 

 

 
Figure 2.2 :  Discriminant function results show separation between normal adrenal 
tissue and neuroblastoma and ganglioneuroma.  Results (circled) also show an overlap 
between neuroblastoma and ganglioneuroma. 
 
 
2.4 Conclusions 

This study suggests that Raman spectroscopy can be used to distinguish 

between neuroblastoma, adrenal gland, and other tumors of neural origin, including 

ganglioneuroma, peripheral nerve sheath tumor, and pheochromocytoma.  

Neuroblastoma was differentiated from each of these tissues with high sensitivity and 

specificity.  This is the first study to apply Raman spectroscopy to the diagnosis of 
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neuroblastoma, and the first study applying Raman spectroscopy to any pediatric 

cancer. 

Visual examination of the mean spectrum of each tissue provided biochemical 

support towards validating Raman spectroscopy.  In general, malignant tissues had 

higher protein content.  This is consistent with previous findings (Malini, R. et al., 2006).  

Likewise, neuroblastoma and ganglioneuroma had significantly lower intensities at 

carotenoid peaks, signifying a lower carotenoid concentration.   Again, this is consistent 

with previous findings which suggest that carotenoids can prevent the cancer process in 

colon, liver, skin, lung, and mammary gland (Hata, T. R. et al., 2000). 

In the future, a cancer biologist will be consulted for further biochemical analysis 

of experimental Raman spectra.  A biologist will be able to correlate the changing 

biochemistry with specific biologic processes.  With this knowledge, Raman can be 

exploited not just as a diagnostic tool, but also as a basic science tool. 

Data was compressed twice before performing discriminant function analysis 

(binning and principal component analysis) because existing software and hardware 

capabilities did not allow for analysis of the full spectral data.  Even this simplified 

analysis method was able to provide a highly accurate diagnosis.   

This method, however, does not provide biochemical information about the data. 

In order to confirm that the peaks which were visually identified as significant are truly 

significant, another analysis method must be used.   

When comparing two groups of tissue at a time, different pathologies could all be 

distinguished with 100% sensitivity and specificity, except neuroblastoma and nerve 

sheath tumor.  This suggests that there is a level of similarity between neuroblastoma 
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and nerve sheath tumor.  To improve this classification result, more data can be added 

to both groups.  Alternate classification methods, such as neural networks, support 

vector machines, or logistic regression can also be used to try to improve classification 

(Krafft, C. et al., 2009). 

Three-group analysis comparing normal adrenal gland, neuroblastoma, and 

ganglioneuroma provided 90% overall accuracy, however, neuroblastoma was only 

classified with 87.1% accuracy.  It is notable that neither neuroblastoma nor 

ganglioneuroma had any spectra misclassified as normal adrenal gland.  This shows a 

high sensitivity, as no false negatives were identified during the analysis.  Because 

neuroblastoma is a spectrum disorder with ganglioneuroma, it is not unusual that it 

would be slightly more difficult to distinguish between those two diseases. 

In order to further validate these results, more data must be collected and blinded 

studies must be performed.  Because these tumors are exceedingly rare, building a 

database of samples fresh from the operating room would take years.  Chapter 3 

examines the use of frozen tissues in data analysis to develop a classification database 

more expediently, and Chapter 6 describes a blinded study carried out with the 

Children’s Oncology Group to test the classification database.     
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CHAPTER 3 INCLUSION OF FROZEN TUMORS IN TISSUE STUDIES 

3.1 Introduction 

In the previous study, it was shown that Raman spectroscopy can accurately 

identify neuroblastoma from adrenal gland and other neural tumors, including 

ganglioneuroma, peripheral nerve sheath tumor, and pheochromocytoma.  Conceivably, 

one could build an extensive Raman spectra database of these tissues which could be 

used to diagnose new tumor incidences. 

While this finding is significant, there is still a dilemma in developing the Raman 

spectral database because of the low incidence of these tumors.  For example, there 

are between 400-650 cases of neuroblastoma diagnosed annually in the United States 

("What Are the Key Statistics About Neuroblastoma?," 2009; Young Jr, J. L. et al., 

1986).  To develop a database of these tumors at a single institution, even a pediatric-

specialty hospital, would take years.  Furthermore, shipping fresh samples between 

institutions poses another set of logistical dilemmas. 

Rather than focusing on only fresh from the operating room samples, this chapter 

focuses on the inclusion of frozen samples into the Raman spectral database.  It is 

known that formalin-fixed tissues are less than ideal for Raman spectroscopic 

measurement because the fixation causes cross-linking of the collagen proteins, 

thereby altering the molecular vibrations and Raman spectrum of the sample (Huang, Z. 

et al., 2003a).  This makes formalin-preserved tissues poor candidates for database 

development for identification of fresh tissues. 
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Several investigators have used frozen tissue samples in their Raman 

spectroscopic investigations (Crow, P. et al., 2005b; Haka, A. S. et al., 2005), however 

there is minimal, if any literature pertaining to the validity of frozen tissue use.      

A histologic study performed on frozen liver and heart tissues showed smaller 

cells after freezing, with larger extracellular spaces.  The changes became more 

pronounced over time.  Furthermore, specific types of tissue react differently to freezing.  

For example, skeletal muscle and skin tend to harden after the freeze-thaw cycle, 

whereas spleen and brain tissues tend to soften (Schäfer, A. T. Kaufmann, J. D., 1999).  

It is not known how such changes would affect Raman spectroscopic measurements of 

frozen tissues.   

A 1996 study recommended that the optimal preservation method for samples to 

be tested with Raman spectroscopy was freezing in optimal cutting temperature 

medium (OCT) (Shim, M. G. Wilson, B. C., 1996).  While many researchers seemed to 

follow similar guidelines, there was little attention paid to the advances in measurement 

technique and processing since the time this paper was published.  For example, the 

spectral resolution of the system described by Shim was 8 cm-1; the resolution of the 

system used for studies described in this text was 3 cm-1.   

3.1.1 Research Goal 

The goal of this chapter is to determine whether Raman spectra of frozen tissues 

are a valid replacement for measurements of fresh tissues.  This was studied in-depth in 

1996, but has not been re-examined in the literature since then, even with major 

technological advances in Raman spectroscopic measurement and analysis.  Spectra of 

peripheral nervous system tumors were collected frozen and compared to that of the 
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tumors measured fresh in Chapter 2.  To judge classification, frozen tissues were 

classified based on a fresh model, and fresh tissues were classified based on a frozen 

model. 

3.2 Materials and Methods 

3.2.1 Data Collection from Fresh Tumors 

The Raman spectra collected and described in Chapter 2 were used as the fresh 

samples for this study.  Any fresh samples which became available throughout the 

period of data collection for frozen tumors were also included in the study.  In these 

cases, the sample was divided into a piece for routine pathology and a piece for Raman 

spectroscopy, as described previously.  In this case, however, the portion reserved for 

Raman spectroscopy was further divided into a piece to test fresh and a piece to test 

frozen, if enough tissue was available.  The portion set aside to test frozen was placed 

in a labeled cryovial or eppindorf tube, and then put in the freezer for testing at a later 

date.  All fresh tissues tested were preserved in formalin and later cut and stained for 

histology review by a trained pathologist as described in Chapter 2.  

3.2.2 Data Collection from Frozen Tumors 

Prior to initiating this study, a preliminary study was performed on fresh (never 

frozen) and frozen chicken muscle, fat, and bone obtained from a butcher to determine 

the best protocol for testing frozen samples (results not published).  Information from a 

literature review was also used to develop the frozen tumor measurement protocol. 

Whenever there was excess fresh tissue available from a pathology case, it was 

placed in a cryovial with no preservatives or fixatives, labeled, and put in a -80°C 

freezer to freeze slowly.  The minimum freezing time for a sample was 24 hours; 
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however, some samples were banked by pathologists for several years, and then pulled 

for Raman testing. 

Before Raman testing, the sample was removed from the freezer.  The cryovial 

was filled with room-temperature saline and the specimen was allowed to defrost for 30 

minutes.  When the sample was thoroughly defrosted, it was removed from the vial and 

placed on a glass microscope slide for Raman testing.  At this point, the sample was 

measured with the same procedures as the fresh samples, described in section 2.2.2.  

Following measurement, the sample was placed in fixative and sent for routine 

pathology testing. 

3.2.3 Data Processing and Analysis 

Raw data was stored on a secure server, and measurement parameters were 

stored in a customized database.  Raw files were preprocessed, reviewed, binned, and 

imported into SPSS as described in Chapter 2 and Appendix B. 

Data was then split into two groups: spectra which were measured from fresh 

specimens (called ‘fresh’ hereafter), and spectra which were measured from frozen, 

defrosted specimens (called ‘frozen’ hereafter).  Principal component analysis and 

discriminant function analysis were performed on the fresh data, and then both models 

were applied to the frozen data.  This showed how well the fresh data model could 

classify the frozen data.  Next, principal component analysis and discriminant function 

analysis were performed on the frozen data, and then applied to the fresh data.  This 

showed how well the frozen data model could classify frozen data.  For each 

comparison, separate models were created. 
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Sensitivity, specificity, and accuracy were used to judge the classification 

methodologies.  They were calculated at the spectral level and at the tissue level, were 

the tissue diagnosis was made based on the majority of the individual spectra. 

3.3 Results 

62 tissues were measured for this experiment.  45 of the samples were only 

measured fresh.  Three samples came from the frozen tumor bank and were only 

measured frozen.  Fourteen samples were split and tested both fresh and frozen. 

The resulting data set consisted of 862 Raman spectra from 59 fresh tissue 

samples, and 252 Raman spectra from 17 frozen tissue samples.  Table 3.1 shows the 

exact number of spectra measured for each fresh and frozen tissue type, as well as the 

total number of specimens examined.   

 

 Fresh  Frozen  Total 
Spectra 

 Specimens Spectra Specimens Spectra  
Adrenal Gland 8 69 1 9 78 
Neuroblastoma 26 416 11 141 557 
Ganglioneuroma 14 206 2 22 228 
PNST 8 117 1 12 129 
Pheochromocytoma 3 54 2 68 122 
Total 59 862 17 252 1114 
Table 3.1 : Number of fresh and frozen specimen and spectra measured for each type of 
tissue. 
 

Figure 3.1 shows the fresh and frozen mean spectrum for each tissue type.  

Notice that overall, there is close correlation between fresh and frozen.  Most peaks 

were preserved along the x-axis (wavenumber) with only minor shifts in the vertical axis 

(intensity). 
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Figure 3.1 : Mean fresh (solid black line) and frozen (dotted line) spectra of normal 
adrenal gland, neuroblastoma, ganglioneuroma, nerve sheath tumor, and 
pheochromocytoma. 
 
 
 Table 3.2 compares the tissue-level classification results using frozen data tested 

on a fresh model, fresh data tested on a frozen model, and fresh-only results obtained 

in Chapter 2.  Table 3.3 shows the same results at the spectra-level. 

When frozen data was tested with the fresh model, normal adrenal gland was 

distinguished from neuroblastoma, ganglioneuroma, nerve sheath tumor, and 

pheochromocytoma with 100% sensitivity and specificity.  Likewise, neuroblastoma and 

ganglioneuroma were separated with 100% sensitivity and specificity at the tissue level.   

When fresh data was tested against the frozen model, normal adrenal gland was 

distinguished from neuroblastoma, ganglioneuroma, and pheochromocytoma with 100% 

sensitivity and specificity at the tissue level.  All normal tissues were distinguished from 
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nerve sheath tumor, but one of seven nerve sheath tumors was classified as normal 

adrenal gland tissue.  When neuroblastoma and ganglioneuroma were compared, 5 of 

14 ganglioneuroma were misclassified as neuroblastoma, and 5 of 26 neuroblastoma 

were misclassified and ganglioneuroma. 

 

 NB v 
Normal 

GN  v 
Normal 

NST v 
Normal 

Pheo v 
Normal 

NB v GN 

 Sen Spec Sen Spec Sen Spec Sen Spec Sen Spec 
Fresh Model 
Frozen Test  

100 100 100 100 100 100 100 100 100 100 

Frozen 
model 
 Fresh test 

100 100 100 100 87.5 100 100 100 80.8 64.3 

Fresh only 
(Chapter 2) 

100 100 100 100 100 100 100 100 100 100 

Table 3.2 : Tissue-Level Classification Results (results shown are percentages; (AG = 
adrenal gland, NB = neuroblastoma, GN = ganglioneuroma, Pheo = 
pheochromocytoma, NST = nerve sheath tumor, Sen = sensitivity, and Spec = 
specificity) 
 
 

Frozen ganglioneuroma and nerve sheath tumor were classified from frozen 

adrenal gland with 100% sensitivity and specificity.  All 141 frozen neuroblastoma 

spectra were correctly separated from frozen adrenal gland when tested against the 

fresh model; however two of nine of the frozen adrenal gland spectra were called 

neuroblastoma.  Only one of 68 pheochromocytoma spectra was misclassified when 

compared to adrenal gland.  All adrenal gland spectra were correctly identified from 

pheochromocytoma when frozen spectra were tested with the fresh model.  When 

neuroblastoma and ganglioneuroma were compared, just 1 of 141 neuroblastoma 

spectra was misclassified.  All ganglioneuromas were correctly identified.  
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 NB  
v Normal 

GN   
v Normal 

NST  
v Normal 

Pheo  
v Normal 

NB v GN 

 Sen Spec Sen Spec Sen Spec Sen Spec Sen Spec 

Fresh Model 
Frozen Test 

100 77.8 100 100 100 100 98.5 100 100 99.3 

Frozen model 
Fresh test 

98.8 91.3 100 91.3 86.3 97.1 100 88.4 84.1 69.9 

Fresh only (Chapter 
2) 

100 92.3 100 94.8 100 94.9 100 97.4 95 96 

Table 3.3 : Individual Spectra Classification Results (results shown are percentages; 
(AG = adrenal gland, NB = neuroblastoma, GN = ganglioneuroma, Pheo = 
pheochromocytoma, NST = nerve sheath tumor, Sen = sensitivity, and Spec = 
specificity) 
 

When fresh neuroblastoma was compared to normal adrenal gland based on the 

frozen model, only 5 of 416 neuroblastoma and 6 of 69 adrenal gland spectra were 

misclassified.  When ganglioneuromas were compared to adrenal gland, 6 of 69 adrenal 

gland spectra were misclassified and all ganglioneuroma spectra were correctly 

identified.  16 of 117 nerve sheath tumor and 2 of 69 adrenal gland spectra were 

misclassified when those groups were compared.  3 normal adrenal gland spectra were 

misclassified when compared to pheochromocytoma.  All pheochromocytoma spectra 

were identified correctly. 

3.4 Conclusions 

This study showed that a fresh tissue model could be used to classify frozen 

tissues, and a frozen tissue model could be used to classify fresh tissues.  Normal 

adrenal gland tissue was separated from neuroblastoma, ganglioneuroma, nerve sheath 

tumor, and pheochromocytoma, and neuroblastoma was distinguished from 

ganglioneuroma with high sensitivity and specificity at the tissue level and at the 



www.manaraa.com

51 

 

spectral level.  The tissue-level and spectra-level results obtained were comparable to 

the results found in Chapter 2 using only fresh tissues. 

Likewise, there was high correlation between the mean fresh and frozen 

spectrum for each type of tissue.  There was little horizontal shift in peaks, although 

there were some differences in peak intensities.  Some of these differences appear to 

be due to normalization or background subtraction of the original data.  Fine-tuning of 

background subtraction methods may make the differences between fresh and frozen 

tissues even more subtle.  For example, the mean fresh Raman spectra of both normal 

adrenal gland and nerve sheath tumor display maximum values around 0.75, while a 

maximum value of 1 would be expected.  This could signal that there are multiple 

populations within the data where background subtraction created maximum values at 

points other than ~1320 cm-1.  Further review of the individual spectra for both fresh 

groups could show populations being normalized to different wavenumbers.  This could 

signal multiple populations within the data, or it could signal multiple background 

fluorescence signals which are not properly or uniformly subtracted using the existing 

automatic background subtraction methodology. 

In the cases of normal adrenal gland, ganglioneuroma, and nerve sheath tumor, 

less than 25 spectra were collected from frozen tissue.  With a sample size this small, 

differences from the mean fresh spectra might simply be due to measurement of a non-

tumor area, or purely from the small sample size. 

Other reasons for differences between the fresh and frozen mean spectra from 

each tissue type could be caused by physical changes to the tissue caused by freezing.  

For example, when the cell membranes rupture, it disrupts the molecular bonds within 
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the cell wall.  This will contribute to changes in the Raman signature, but it is not known 

how strong the impact will be.    

 Classification results of fresh tissue based on a frozen model were less than 

100% in some cases.  The size of the frozen tissue model was substantially smaller 

than that of the fresh tissue model (about ¼ of the total data).  Every group except 

neuroblastoma only had one or two frozen cases.  This does not offer enough variation 

to build a robust classification model.  As more samples are added to the frozen tissue 

model, classification of new, unknown tissues should improve dramatically. 

Additionally, a histological review of the frozen tissue sections offers another 

potential cause for misdiagnosis.  Within the subset of frozen neuroblastoma tissues, 

one case of neuroblastoma was actually a ganglioneuroblastoma which had distinct 

regions of mature ganglioneuroma cells with islands of immature neuroblasts.  Tissues 

were classified as neuroblastoma even if they had only a few neuroblast cells.  Although 

the tissue in question looked predominantly like a ganglioneuroma, it was still called 

neuroblastoma because of the presence of neuroblast cells.  It is possible that Raman 

measurement missed these islands of neuroblast cells.  In the future, detailed scanning 

studies will determine the optimal minimum area to be measured with each scan.    

Another tissue was a chemotherapy-treated neuroblastoma which had mostly 

mature cells with a region of immature neuroblast cells which appeared to be from a 

different clone than the mature cells.  Because 2 out of 11 (18%) of the neuroblastoma 

samples in the frozen training model displayed non-textbook histology, this could cause 

a skew to the frozen tissue model.   
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The overall results suggest that the tissue changes due to the freeze-thaw 

process may not be significant in Raman diagnosis.  While it is known that freezing 

causes cells to shrink, and may cause rupture of cells by ice crystals, it has not yet been 

specifically defined how this would alter the Raman spectrum (Schäfer, A. T. Kaufmann, 

J. D., 1999).  For the time being, it does appear that inclusion of frozen tumor samples 

in studies applied to fresh tissues is still a valid technique. 

This study implies that in might be possible to build a classification model based 

on frozen tissues from a cryopreserved tissue bank which could then be used to classify 

fresh tissues.  This would allow rapid development of a large database of tissues which 

could include both common and extremely rare tissues.  When Raman spectroscopy is 

combined with real-time software and a diagnostic model, nearly any tissue could be 

identified, potentially even from the operating room.  An immediate diagnosis would 

offer a huge advantage over the traditional frozen section diagnosis.  Frozen section 

diagnosis takes 20-30 minutes, and does not guarantee 100% accuracy.  Raman might 

offer a near-real-time alternative with accuracy at least as good as the frozen section.     

Furthermore, with proper privacy practices established, Raman spectra collected 

from a frozen tumor bank can be combined with other patient information, including 

treatment information and outcome.  It might be used to determine the optimal treatment 

method or measure the effect of chemotherapy throughout treatment.  
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CHAPTER 4 IDENTIFICATION OF NEUROBLASTOMA FROM SMAL L ROUND 

BLUE CELL TUMORS 

4.1 Introduction: Small Round Blue Cell Tumors 

The purpose of the previous chapters was to identify neuroblastoma from adrenal 

gland, it’s most common origin site, and from other neural-derived tumors, including 

ganglioneuroma, nerve sheath tumor, and pheochromocytoma.  The goal of this chapter 

is to distinguish neuroblastoma from other tumors which have similar histology but 

which are not neural-derived.  In cases where neuroblastoma is found outside the 

adrenal gland, it must also be distinguished from these histologically similar tumors. 

Neuroblastoma is a small round blue cell tumor (SRBCT).  The main types of 

small round blue cell tumors are neuroblastoma, Ewing sarcoma, rhabdomyosarcoma, 

and non-Hodgkin lymphoma (Chen, Q.-R. et al., 2007; Gregorio, A. et al., 2008).  

Differentiation between these types of tumors is difficult, especially when the clinical 

context is unusual.  Accurate diagnosis is essential with small round blue cell tumors 

because the treatment methods vary for each type of tumor (Chen, Q.-R. et al., 2007).  

Most commonly, diagnostic confusion occurs when a tumor metastasizes to a distant 

location, or when the tumor presents as a large mass in the abdomen and the exact 

origin cannot be determined (Orkin, S. H. et al., 2009). 

The mean age at diagnosis for neuroblastoma, non-Hodgkin’s lymphoma, Ewing 

sarcoma, and rhabdomyosarcoma are shown in Table 4.1 (Cotran, R. S. et al., 1994). 

 
0-4 years old 5-9 years old 
Neuroblastoma Neuroblastoma 
 Ewing’s Sarcoma 
Rhabdomyosarcoma  
 non-Hodgkin Lymphoma 
Table 4.1 : Most commonly diagnosed ages for each small round blue cell tumors. 



www.manaraa.com

55 

 

4.1.1 Non-Hodgkin Lymphoma 

Non-Hodgkin lymphomas are derived from lymph tissue and its cells, including 

lymphocytes, histiocytes, and their precursor cells.  Non-Hodgkin lymphoma 

encompasses several sub-types, and a variety of systems exist for their classification.  

The most widely-accepted grouping is the ‘World Health Organization Classification of 

Tumors of the Hematopoietec and Lymphoid Tissues’.  This separates tumors based on 

the parent cell (B-cell, T-cell, or natural killer cell), then further groups tumors based on 

histology, genetics, immunophenotype, and clinical presentation.  Pediatric tumors of B-

cell origin include Burkitt’s lymphoma, diffuse large B-cell lymphoma, and primary 

mediastinal large B-cell lymphoma (Orkin, S. H. et al., 2009).  T-cell originating tumors 

include anaplastic large cell lymphoma and peripheral T-cell lymphoma. 

4.1.2 Ewing Sarcoma 

Ewing sarcomas are found predominantly in bone, though they can also be found 

in other soft tissues.  Histologically, the tumor cells often appear to be of neural origin 

(Cotran, R. S. et al., 1994) and show similar histology patterns to neuroblastoma, 

however the progenitor cells may actually be mesenchymal stem cells (Meltzer, P. S., 

2007). 

4.1.3 Rhabdomyosarcoma 

Rhabdomyosarcoma is the most common soft tissue tumor in children (Cotran, 

R. S. et al., 1994).  The progenitor cell is the rhabdomyoblast, which is a primitive 

muscle cell.  In the arms and legs, rhabdomyosarcoma is typically associated with 

skeletal muscle, however, in the rest of the body, it is typically found in areas with 
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minimal skeletal muscle, including the retroperitoneum, head and neck, and 

genitourinary track. 

Embryonal rhabdomyosarcoma, including botryoid type, is the most common 

subtype of rhabdomyosarcoma (Cotran, R. S. et al., 1994).  It is typically diagnosed in 

children less than 10 years old.  The rhabdomyoblasts mimic muscle cells at differing 

points of embryonic development, including both round cells and spindle cells.  

4.1.4 Existing Diagnostic Methods for Small Round Blue Cell Tumors 

There are several methods for differentiating specific types of small round blue 

cell tumors, including immunohistochemistry (Finegold, M. J. et al., 1983; Gregorio, A. 

et al., 2008), cytogenetics including fluorescence in situ hybridization (Taylor, C. et al., 

1993), and polymerase chain reactions (PCR) (Chen, Q.-R. et al., 2007), and 

complementary DNA microarrays (Khan, J. et al., 2001). 

One of the more common methods uses groups of antibodies which recognize 

markers within specific types of tumors (Gregorio, A. et al., 2008).  This is known as 

immunohistochemistry.  There is no single antibody or test, however, which can 

clinically differentiate all the sub-types of small round blue cell tumors.  Most research in 

developing diagnostic tests for small round blue cell tumors involves searching for new 

antibodies which can better identify tumor markers of the specific tumor types (Gregorio, 

A. et al., 2008).  The downside of immunohistochemical methods is that they can only 

examine one protein or tumor marker at a time (Chen, Q.-R. et al., 2007). 

Khan et al. used complementary DNA (cDNA) microarrays to identify 131 genes 

which have diagnostic capability for small round blue cell tumors (Khan, J. et al., 2001).  

They were able to predict disease classification using supervised clustering methods.  
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In 2007, the National Cancer Institute and Althea Technologies announced a 

methodology “capable of accurately differentiating the common forms of the disease: 

neuroblastoma, rhabdomyosarcoma, non-Hodgkin's lymphoma, and Ewing's family of 

tumors” ("Althea Technologies Announces the Development of a Diagnostic Capable of 

Differentiating Multiple Forms of Childhood Cancer," 2007).  It allows a diagnosis based 

on a single test, rather than a series of up to six immunohistochemistry tests.  The test 

was developed by using complementary DNA microarrays to identify genes which have 

diagnostic capabilities (Chen, Q.-R. et al., 2007).  39 total genes were selected for the 

final test, and neural networks were used to build a classification model.  Next, a 

reverse transcription polymerase chain reaction (PCR) assay was developed to 

measure the gene levels and make a tissue diagnosis (Chen, Q.-R. et al., 2007).      

The PCR test developed by Chen et al. is simpler and cheaper than the standard 

immunohistochemistry methods, and  the required sample size is much smaller (Chen, 

Q.-R. et al., 2007).  The turnaround time, however, is still 48 hours, and samples must 

be sent to an outside lab for the testing.  The test and laboratory were CLIA certified in 

2009 and began the FDA approval process.  The test is still not real time, however, and 

it requires a specialized lab and lab technician to perform the test.  The test began FDA 

testing in 2009 ("Childhood Cancer Panel," 2008). 

Raman spectroscopy offers several distinct advantages over this test, which is 

the current ‘state-of-the-art’.  A Raman diagnosis can be made in minutes, right from the 

operating room or pathology lab without the need for specialized laboratory equipment 

or technicians.  Sensitivity and specificity of previous work, including identification of 

neuroblastoma from other nervous system tumors are comparable to the sensitivity of 
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the Althea Technologies test.  Assuming similar results in identification of small round 

blue cell tumors, Raman spectroscopy could offer equally accurate results in a fraction 

of the time.   

4.2 Materials and Methods 

4.2.1 Sample Measurement 

Fresh and frozen samples of untreated neuroblastoma, Ewing sarcoma, 

rhabdomyosarcoma, and non-Hodgkin lymphoma were collected fresh from the 

operating room or frozen from our tumor bank.  Frozen tissues were included in the 

study without confirmatory analysis because our results from Chapter 2 suggested 

frozen tissues were comparable to their frozen counterparts. 

Half of each tumor sample was used for routine pathology, and half was used for 

Raman analysis using the same protocols described in Chapters 2 and 3.  Because the 

small round blue cell tumors display extremely similar histological characteristics, 

pathology techniques other than light microscopy were necessary for tumor diagnosis.  

Other techniques which were used to diagnose the control pathology tissue sample 

include conventional karotyping, FISH analysis, immunohistochemical staining, and 

electron microscopic examination as needed.   

After Raman measurement, a hematoxylin-eosin slide was created from the 

Raman sample to confirm tumor presence in that region of tissue.  Pathology diagnosis 

was not made based on microscopy review of the Raman sample, however, the 

pathologist did confirm that the Raman sample had similar histology to the gold 

standard pathology sample. In order to ensure the ‘purest’ samples, all treated tumors, 

tumors which displayed sparse malignant cells, and tumors with tissue damage such as 
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necrosis, freezing artifact, or trauma from surgery were excluded from the study.  This 

selection process was more rigorous than that used for identification of neural-derived 

tumors, but it ensured that all samples included were predominantly composed of viable 

tumor.  The goal of this study was to distinguish different types of tumors, rather than 

distinguish tumors from normal tissue.  This is the reason for exclusion of less than pure 

tumor samples. 

4.2.2 Data Processing 

Data was pre-processed, binned, and imported into SPSS as described in 

Chapter 2.  A mean spectrum was calculated for each type of tumor.  Confirmatory 

analysis using Principal Component Analysis and Discriminant Function Analysis was 

performed to ensure that the tissues could be separated.   

Once confirmatory analysis proved successful, a more detailed analysis was 

performed to identify specific peaks or regions of peaks which were diagnostically 

significant.  Preprocessed, unbinned data were entered into SPSS.  Unbinned data was 

used to obtain the most detailed possible information about the relevant peaks.  

Discriminant function analysis was performed on this data.  The table containing the 

standardized canonical discriminant functions was exported from SPSS.  This table 

contained a list of all peaks which were diagnostically significant in the analysis; 

however, one drawback of this table is that it tended to give higher significance to peaks 

with lower wavenumbers.  This is purely because they were entered into the analysis 

first.   

To combat this issue, the standardized canonical discriminant functions were 

further tested to reach the optimal combination of diagnostic peaks.  Some of the peaks 
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represent redundant variation that is already explained by other peaks, and others are 

due to artificial weighting at the lower wavenumbers.  An iterative process was followed 

to remove redundant peaks and come to as small of a peak set as possible.   

First, all the peaks from the standardized canonical discriminant functions table 

were entered into a discriminant function analysis.  A peak or a combination of peaks 

was then removed from the list and the discriminant function analysis was run again.  

Initially, a peak was be selected for removal if it had a low standardized canonical 

discriminant function value, or if it was very close to another peak(s) included in the 

standardized canonical discriminant functions (such as 745, 746, 748 cm-1). 

If the classification results improved, the peak could safely be removed from the 

analysis.  If the classification results got worse, the peak was again included in the 

analysis, and a new peak was selected for removal.  The process of peak removal 

continued in this manner until all peaks in the model were tested, and none could be 

removed without lowering classification results.  The peak selection process is 

illustrated in a flowchart in Figure 4.1. 
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Figure 4.1 : Decision Tree for discriminant function analysis peak selection 

 

When the in-depth peak analysis was performed, a peak was excluded due to a 

low weighting value in the standardized canonical discriminant function table, or 

because it was a low wavenumber, or because there were two adjacent peaks which 

did not likely offer and more diagnostic ability than a single peak.  After several peaks 

were removed, it became more difficult to judge which peaks could be removed.  In this 

case, peaks were removed one-by-one until a peak which was not necessary for 

analysis was found. 

Once the maximal spectral classification was reached, each tissue was again 

assigned an overall diagnosis.  In the future, when an optimal classification model is 

determined, new tissues can be quickly diagnosed using the same model.  As the size 
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of the data set increases, however, the data model should be revisited for validation 

purposes. 

The combination of peaks which provided the highest diagnostic accuracy using 

discriminant function analysis was found.  Then, the minimum combination of peaks 

which was necessary to identify all tissues with 100% accuracy was found.  Data was 

analyzed at the individual spectra level, and then the tissue level results were calculated 

using the majority spectra rule. 

4.3 Results 

4.3.1 Tissues Studied 

Table 4.2 shows the data available for this study.  The data set included 179 

neuroblastoma spectra from 9 surgical cases, 37 Ewing sarcoma spectra from 3 

surgical cases, 100 non-Hodgkin lymphoma spectra from 6 surgical cases, and 164 

rhabdomyosarcoma spectra from 4 surgical cases.  Because some tumors had a large 

volume of viable tumor tissue, multiple samples were taken from some surgical cases.  

  
 Surgical Cases Samples Spectra 

Neuroblastoma 9 11 179 
Ewing Sarcoma 3 3 37 
non-Hodgkin Lymphoma 6 7 100 
Rhabdomyosarcoma 4 11 164 

TOTAL 22 32 480 
Table 4.2 : Samples and spectra used for identification of neuroblastoma from other 
small round blue cell tumors. 
 
 
4.3.2 Visual Inspection of Raman Spectra 

The mean spectrum and a representative hematoxylin-eosin microscopy image 

for neuroblastoma, Ewing sarcoma, non-Hodgkin lymphoma, and rhabdomyosarcoma 
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are shown in Figure 4.2.  There were clear differences between each of the tissues.  

Some of the obvious changes are circled in Figure 4.2. 

Neuroblastoma lacked the shoulder region in the range 1230.5-1275.0 cm-1.  It 

had a distinct signature in the range of 1500-1659 cm-1, but it was not as predominant 

as the signature for Ewing sarcoma. 

753.7, 1230.5, and 1630.9 cm-1 are all associated with tryptophan.  Ewing 

sarcoma had the highest intensity at each of these peaks.  It also had the highest value 

at the diagnostic peaks 1540.6, 1567.2, 1571.5, 1608.9, 1630.9, 1653.7, and 1655.4 

cm-1, which were all within the range of 1500-1659 cm-1 where it had a strong signature.  

Finally, Ewing sarcoma had a significant valley at 793.5 cm-1 which was not present in 

the other tissues. 

The rhabdomyosarcoma and non-Hodgkin lymphoma spectra displayed only 

slight differences from each other.  They lacked the strong signature between 1500 and 

1659 cm-1 which was present in neuroblastoma and Ewing sarcoma.  

Rhabdomyosarcoma had a strong shoulder from 1230.5-1275.0 cm-1 while non-Hodgkin 

lymphoma had only a subtle shoulder.  Other characteristics which visually 

distinguished non-Hodgkin lymphoma from rhabdomyosarcoma were higher-intensity 

peaks at 1092.5 and 1446.1 cm-1 in non-Hodgkin lymphoma. 

4.3.3 Confirmatory Analysis 

Confirmatory analysis correctly classified 90.4% of spectra using principal 

component analysis and discriminant function analysis.  At the tissue level, all samples 

were correctly correlated with the pathology gold-standard as neuroblastoma, Ewing 

sarcoma, non-Hodgkin lymphoma, or rhabdomyosarcoma.  
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Figure 4.2 : mean spectrum and histology images of neuroblastoma, Ewing sarcoma, 
rhabdomyosarcoma, and non-Hodgkin lymphoma with key diagnostic peaks marked. 

 
 

4.3.4 Peak-by-Peak Analysis 

Using, leave-one-out discriminant function analysis, 18 peaks identified 

neuroblastoma, Ewing sarcoma, non-Hodgkin lymphoma, and rhabdomyosarcoma with 

94% accuracy.  All sample-level diagnoses were correct.  The 18 peaks were 676.2, 

729.7, 753.7, 793.5, 980.7, 1005.5, 1092, 1127.1, 1230.5b 1275.0, 1446.1, 1540.6, 

1567.2, 1571.5, 1608.9, 1630.9, 1653.7, and 1655.4 cm-1.  They are marked on Figure 

4.2. 

When determining the minimum number of peaks necessary to classify all 

tissues with 100% accuracy, only the following 10 peaks were needed: 676.2, 729.7, 
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793.5, 980.7, 1092.5, 1230.5, 1275.0, 1571.5, 1608.9, and 1655.4 cm-1.  These peaks 

are marked in Figure 4.2.  With this combination of peaks, spectral classification was 

87.9% accurate. 

4.4 Conclusions 

This is the first study using Raman spectroscopy to distinguish between 

neuroblastoma, Ewing sarcoma, non-Hodgkin lymphoma, and rhabdomyosarcoma, a 

class of cancers known as small round blue cell tumors. 

Each of the small round blue cell tumors has a low incidence.  Each year in the 

United States, there are about 387 neuroblastoma cases (other sources suggest the 

number may be slightly higher: 400-650 annual cases ("What Are the Key Statistics 

About Neuroblastoma?," 2009; Young Jr, J. L. et al., 1986)), 112 Ewing sarcoma cases, 

191 rhabdomyosarcoma cases, and 386 non-Hodgkin lymphoma cases (Young Jr, J. L. 

et al., 1986), totaling less than 1100 diagnoses of the four most common small round 

blue cell tumors.  In contrast, there are more than 214,000 new cases of breast cancer 

and 234,000 new cases of prostate cancer diagnosed annually in the United States 

("Cancer Facts & Figures 2006," 2006).  Even though the small round blue cell tumors 

only represent a fraction of the total number of annual cancer diagnoses, their similar 

histologies make them a major diagnostic problem. 

Current clinical diagnostic methods to identify small round blue cell tumors in 

addition to traditional hematoxylin-eosin staining with light microscopy include 

immunohistochemistry, fluorescence in-situ hybridization, electron microscopy, and 

karotyping.  To get a definitive diagnosis might take several days.  The current state-of-

the-art test is being developed by Chen et al using polymerase chain reaction and 
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artificial neural networks to find unique genetic profiles for each type of small round blue 

cell tumors.  The drawback to this test, however, is that is still has a 48-hour turnaround 

time.  An existing, traditional Raman spectroscopy system stationed in a pathology 

laboratory could provide a diagnosis within hours of tumor resection.  Classification time 

could be further reduced by introduction of a portable Raman spectroscopy surgical tool 

directly into the operating room.  In that case, a surgeon could theoretically obtain a 

diagnosis even before the tumor is removed. 

Discriminant function analysis showed that only 10-18 peaks were necessary to 

accurately classify the small round blue cell tumors.  At the tissue level, small 

combinations of peaks classify data as well as the full range of peaks.  Spectral-level 

classification actually improved when only peaks which were diagnostically significant 

were used.  Identifying peaks which are diagnostically significant allows a simpler 

measurement and classification method than using the whole range of wavenumbers.   

While the process of peak selection is time consuming, it allows much greater 

understanding of the Raman spectra.  In the future, the selection process might be 

automated to reduce the time necessary for peak selection.  The automation process 

could also address other questions regarding this technique, including whether the 

order of peak removal matters.  In the data described here, peaks were removed from 

the analysis based on the standardized canonical discriminant functions, then based on 

the proximity of other diagnostic peaks, or on the magnitude of the wavenumber with 

lower wavenumbers selected for removal first.  It is unknown whether the results of 

peak selection (including which peaks are selected as diagnostically significant, and the 

overall classification results ) would change if peaks were removed from low-
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wavenumber to high-wavenumber, vice-versa, or through another technique such as 

attempting to remove peaks in order of lowest standardized canonical discriminant 

function. 

Peak-wise analysis was not performed on data prior to this point because the 

computing and software capability were not available.  A new software release of SPSS 

combined with a better processing system allowed in-depth data analysis and peak 

selection, rather than an overall analysis which provided little information regarding 

underlying biochemical significance.  In the future, other data included in this research 

can be reviewed and processed using similar techniques to improve classification 

results and draw conclusions about the biological significance of the diagnostic peaks. 

Using select peaks also allows derivation of biochemically significant information 

from the data.  Peaks which are diagnostically different correlate to varying 

concentrations of specific chemical bonds and biochemicals.  As an example, 

tryptophan had the highest concentration in Ewing sarcoma, according to the peak 

intensities at 753.7, and 1230.5, cm-1.  An experienced cancer biologist might then be 

able to correlate this finding with the biology of Ewing sarcoma.  One possible 

explanation is that tryptophan is over-expressed in Ewing sarcoma because it is key 

component in the CD99 protein and the EWS/FLI-1 gene.  This hypothesis could only 

be proven with careful testing and review by an experienced cancer biologist, however. 

Neuroblastoma had the sample size of each tumor group.  As the number of 

specimen examined increases for neuroblastoma and for the other small round blue cell 

tumors, more variability will be introduced into the database.  This will have several 

implications.   
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First, peaks which were originally thought to be diagnostically significant may not 

actually be significant.  As the mean and standard deviation are adjusted to truly 

represent the total population for a given tumor, some peaks will become less significant 

while others become more significant.  This means the data and classification models 

need to be adjusted over time to accommodate the fluid model. 

Another implication is a broader range of tumors will be identifiable over time.  As 

the significant peaks are fine-tuned, and more tumors are added to the database, 

classification ability should become more sensitive and specific over time. 

Some of the Raman ‘peaks’ which were mathematically selected in data analysis 

actually correlated to valleys on the Raman spectra.  This signifies the lack of a 

chemical or a region between two chemicals, or it may represent a horizontal peak shift.  

793.5 cm-1 was a strong valley for Ewing sarcoma, and 1571.5 and 1630 cm-1 were 

valleys for both neuroblastoma and Ewing sarcoma.  Another feature which was 

identified through mathematical peak selection was a shoulder at 1275 cm-1.  Re-

measuring samples with a higher-resolution optical system might point to a combination 

of individual peaks which amounted to a shoulder using our existing optical system.  

Examination of these spectral features by an experienced biochemist or biologist may 

provide further insight towards the cause of these features.  
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CHAPTER 5 CLASSIFICATION OF UNFAVORABLE, FAVORABLE,  AND TREATED 

NEUROBLASTOMAS 

5.1 Introduction 

Treatment and prognosis of neuroblastoma are based on several factors.  The 

stage of the disease describes whether the tumor has metastasized, or spread to other 

locations.  Histology markers are used to determine the Shimada favorability of the 

tumor.  This allows doctors to identify the tumor’s aggressiveness.  Finally, the advent of 

genetic testing allows physicians to identify several genetic factors associated with a 

good or poor prognosis (Cohn, S. L. et al., 2009).  Several different stratification 

methodologies exist for determining neuroblastoma prognosis.  In general, the 

methodologies used depend on the geographic location of the hospital (North America, 

Europe, Asia, and Australia each have slightly different methodologies) and the 

pathologists’ personal preference. 

5.1.1 Shimada Classification Based on Histology Findings 

In 1999, Shimada proposed a method for determining the favorability of 

neuroblastoma as favorable or unfavorable (Shimada, H. et al., 1999a).  It considers the 

patient’s age, development of stroma, grade of differentiation, and Mitosis Karyorrhexis 

Index (MKI).  MKI is defined as the number of cells experiencing mitosis (process of 

separation of two sets of chromosomes in a splitting cell) or karyorrhexis (fragmentation 

of nucleus in the dying cell; measurable by the irregular distribution of chromatin in the 

cell) in a count of 5,000 total cells (Shimada, H. et al., 1999b).  The pathologist must 

sample between six and twenty areas on the sample to count a total of 5,000 cells.  Low 

MKI is defined as less than two percent of cells in mitosis or karyorrhexis, intermediate 
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is defined as two to four percent of cells, and high is defined as four percent of cells or 

more in mitosis or karyorrhexis. 

Stromal cells are connective tissue cells.  In stroma-poor neuroblastomas, there 

is little separation between neuroblast cells, and the stromal cells are poorly developed.  

In stroma-rich and stroma-dominant neuroblastoma, there are more stromal cells which 

are more developed (Shimada, H. et al., 1999b).  

In differentiating neuroblastomas, at least 5% of cells are matured to ganglion 

cells.  Poorly differentiating neuroblastomas have less than 5% of cells matured to 

ganglion cells.  Ganglioneuroblastoma subtype exhibits a mix of neuroblastoma-like 

tumor and ganglioneuroma-like tumor (mature stromal cells with scattered mature 

ganglion cells).  The undifferentiated subtype has small, unidentifiable undifferentiated 

cells.  Generally, pathologic methods other than histology (such as electron microscopy, 

genetic testing) are required to identify undifferentiated tumors (Shimada, H. et al., 

1999b). 

This system became a standard because it strongly correlated with event free 

survival rates, and there is typically high rate of consensus among pathologists.  

Agreement can vary, however, based on the region of the tissue which is tested.  Some 

areas display different characteristics than others.  Table 5.1 shows the decision 

processing for diagnosing neuroblastoma as favorable or unfavorable, as well as 

ganglioneuroblastoma. 
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Prognosis Age Differentiation MKI Stroma 
Favorable <18 months poorly differentiated low - 

<18 months poorly differentiated intermediate - 
18 mo - 5 yr differentiating low - 

ganglioneuroblastoma rich 

Unfavorable <18 months undifferentiated - - 
<18 months - high - 
18 mo - 5 yr undifferentiated - - 
18 mo - 5 yr poorly differentiated - - 
18 mo - 5 yr - intermediate - 
18 mo - 5 yr - high - 
> 5 years - - - 
- ganglioneuroblastoma - composite 

Table 5.1 : Definition of the Shimada system of classifying favorable and unfavorable 
neuroblastoma, ganglioneuroblastoma, and ganglioneuroma.  (adapted from (Shimada, 
H. et al., 1999a)) 

 

5.1.2 International Neuroblastoma Staging System 

In 1988, the International Neuroblastoma Staging System was established for 

staging neuroblastoma and the International Neuroblastoma Response Criteria was 

established to track response to treatment (Brodeur, G. et al., 1988).  This was revised 

in 1993 (Brodeur, G. et al., 1993).  Howman-Giles et al. summarized the stages as 

follows: 

“Stage 1 : Localized tumor without regional lymph node involvement. 

Stage 2 : Unilateral tumor with either incomplete gross resection or ipsilateral nodal 

involvement. 

Stage 3 : Tumor that crosses the midline or has contralateral nodal involvement. 

Stage 4 : Tumor disseminated to distant lymph nodes, bone, bone marrow, liver, etc. 

Stage 4S : Special category: age <1 year, localized primary tumor, dissemination 

only to liver, skin, or bone marrow.”  
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5.1.3 Other Prognostic Factors 

While the two previous methodologies, Shimada classification and International 

Neuroblastoma Staging System, are widely accepted for neuroblastoma diagnosis, 

several other markers exist which are associated with a good or poor prognosis.  

Prognostic markers cover a variety of information, from age to tumor markers (VMA, 

HVA, dopamine, ferritin levels, etc.) to histology (degree of differentiation, MKI, 

presence of stroma, etc) and genetics (growth fraction, N-myc copy number, presence 

or absence of oncogenes and tumor suppressor genes, etc)  (Brodeur, G. et al., 1993).  

Several other key markers are described below: 

Age: While age is included in the Shimada classification, it stands alone as a 

significant prognostic marker.  Children who are diagnosed younger than 18 months are 

likely to have a good outcome ("How is Neuroblastoma Staged?," 2009).  However the 

exception to this rule is that children diagnosed with stage 4S disease at less than 4 

weeks old tend to have higher mortality rates due to complications from disease (van 

Noesel, M. et al., 1997). 

Ploidy:  Ploidy is the number of sets of chromosomes in a cell.  Normal human 

cells are diploid, meaning they have two pairs of chromosomes.  Cells expressing more 

sets of chromosomes are called hyperdiploid.  For very young children, hyperdiploidy is 

associated with better outcomes ("How is Neuroblastoma Staged?," 2009). 

MYCN Amplification: MYCN is a proto-oncogene.  It normally prevents cells 

from multiplying too quickly, and it is normally expressed within a cell.  When the level of 

MYCN is amplified, however, it turns into an oncogene, meaning it makes the cell 
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cancerous.  MYCN over expression is associated with a poor prognosis ("How is 

Neuroblastoma Staged?," 2009). 

Nerve growth factor (neutrophin) receptors:  Neutrophin receptors are located 

on the surface of normal neural cells.  They receive extracellular signals which induce 

the cell to mature.  The presence of neutrophins such as TrkA are associated with a 

favorable prognosis ("How is Neuroblastoma Staged?," 2009). 

Serum Markers:  Neuroblastoma cells may release chemicals such as ferritin, 

neuron-specific enolase, or lactate dehydrogenase into the blood, which are all 

associated with a poor prognosis ("How is Neuroblastoma Staged?," 2009).  These can 

all be tested with blood serum tests.  Another substance, ganglioside GD2 may be 

overabundant in neuroblastoma as well, but it’s correlation to prognosis is not known 

("How is Neuroblastoma Staged?," 2009). 

5.1.4 International Neuroblastoma Risk Group Classification System  

The stage of the neuroblastoma is based solely on the patient age, the tumor’s 

location and the spread of disease, while the Shimada classification is based strictly on 

the tumor histology and patient age.  Meanwhile, a variety of other markers also exist 

for predicting patient prognosis as described above, including VMA, HVA, dopamine, 

and ferritin levels, growth fraction, MYCN copy number and other genetic factors, and 

age.  All of this information combined gives a more accurate prediction about the 

patient’s prognosis and the best form of treatment.  Based on these prognostic factors, 

patients are placed into low, intermediate, or high risk groups.  In general, the 5-year 

survival rates for these groups are 90-95%, 85-90%, and ~30%, respectively ("How is 

Neuroblastoma Staged?," 2009).   
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From 2004 to 2006, researchers from all of the international neuroblastoma 

research groups met to establish a neuroblastoma prognostic and aggressiveness 

classification methodology based on statistical analysis of previous neuroblastoma 

prognostic factor, treatment, and outcome data in patients from 1990 through 2002 

(Cohn, S. L. et al., 2009).  Information was collected on 35 potential prognostic 

identifiers from 8,800 patients.  The significance of prognostic identifiers was judged 

based on event free survival (EFS) rates.  Because age was included as a factor, 

Shimada classification was split into tumor differentiation, MKI, and histology category. 

Factors which were found to be significant included stage of disease (INSS), 

patient age, histology category (neuroblastoma, ganglioneuroblastoma intermixed 

differentiated, or nodular), tumor differentiation, MYCN amplification, chromosome 11q 

abnormality, and ploidy (Cohn, S. L. et al., 2009).  From these seven factors, a decision 

tree was created for separating the different prognostic groups.  A total of sixteen 

different groups were created for pre-treatment classification.  The sixteen groups were 

further split into four risk groups: very low (>85% EFS), low (>75% - ≤85% EFS), 

intermediate (≥50% - ≤75% EFS), and high (<50% EFS).   

It was suggested that treatment protocols should be customized for each of the 

sixteen groups.  Generally, low risk patients are treated with surgery or no treatment, 

intermediate risk patients are treated with a moderate chemotherapy, and high risk 

patients are treated with aggressive chemotherapy and sometimes bone marrow 

transplants (Shimada, H. et al., 1999a).  The new 16-group prognostic model, however, 

may change the recommended protocol for some patient groups. 
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5.1.5 Effects of Treatment 

There are many variations in the effect of treatment on neuroblastoma.  If an 

ineffective method of treatment is used, there may be no effect on the tumor. Other 

changes include tissue necrosis, hemorrhage, calcification of the tissue, or maturation 

of the tumor.  When neuroblastomas mature, the neuroblast cells differentiate to 

ganglionic cells and the neurofibrillary stroma differentiate into collagenous 

Schwannian-type stroma.  The combination of these changes makes matured, treated 

neuroblastomas have histologies similar to ganglioneuroma or ganglioneuroblastoma. 

5.1.6 Previous Work in Identifying Specific Tumor Features 

While certain treatments can cause necrosis to a tumor and the surrounding 

tissue, the presence of a tumor, even untreated, can also cause necrosis.  A study of 

untreated glioblastoma tumors showed that it was possible to identify between tumor 

tissue and necrotic tissue with Raman spectroscopy using discriminant function analysis 

(Koljenovic, S. et al., 2002).  Peak analysis showed a higher contribution of cholesterol 

in necrotic tissue regions. 

Several studies have examined varying levels of dysplasia in different tissues, 

including cervix (Robichaux-Viehoever, A. et al., 2007), esophagus (Shetty, G. et al., 

2006a), epithelial tissues (Stone, N. et al., 2002), the larynx (Stone, N. et al., 2000), and 

the bladder (Crow, P. et al., 2004).  Dysplasia represents a shift from normal tissue 

towards cancer. It is often classified as high-grade or low-grade, or according to the 

types of cells present.  While this varies slightly from cancer grading, it represents a 

similar classification methodology based on the underlying biochemistry of the abnormal 

tissue. 
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 One Raman spectroscopy study was able to differentiate between three stages 

of bladder cancer, as well as identify them from other benign conditions and normal 

bladder tissue.  Also of note in this study, authors were able to predict the stage of the 

disease (how far it penetrated into other areas) based on the biochemical composition 

of the primary tumor site (Crow, P. et al., 2004).   

Prostate cancer represents another type of cancer where the designated 

aggressiveness of the disease (Gleason score) can vary between pathologists.  A study 

was performed which examined the three grades of prostate cancer (Gleason score 

less than 7, equal to 7, or more than 7) and benign prostatic hyperplasia using Raman 

spectroscopy.  Samples were only included if the two blinded pathologists studying the 

tissues came to the same Gleason score independently.  Analysis of the four tissue 

groups showed high sensitivity (81-94%) and specificity (92-100%) in identifying each 

grade of tumor and the benign condition (Crow, P. et al., 2003b). 

Rather than testing whole tissues, cell lines are sometimes used for Raman 

measurement.  This allows evaluation of only cancer cells, rather than inclusion of other 

extra-cellular components and other cell types.  One study was performed which looked 

at two aggressive prostate cancer cell lines (androgen insensitive, poorly differentiated) 

and two non-aggressive prostate cancer cell lines (androgen sensitive, well 

differentiated).  A combination of principal component analysis and discriminant function 

analysis was able to differentiate between the aggressive and non-aggressive cell lines.  

Furthermore, it could distinguish each cell line from the other three cell lines tested 

(Crow, P. et al., 2005a). 
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A similar study was performed to identify cells transformed to have an extended 

cell cycle and lifespan and cells exposed to asbestos for immortalization from normal 

bronchial epithelial cells.  Discriminant function analysis was able to identify the three 

groups of cells with 75-87% sensitivity and 85-96% specificity (Jess, P. et al., 2009).  

Other attempts to measure specific grades of tumors, including breast (Clare, S. 

E. et al., 2006) and thyroid cancer (Teixeira, C. et al., 2009) have been unsuccessful to 

date, with many studies concluding that a larger dataset of tumors of each grade would 

increase classification ability. 

5.1.7 Research Plan 

The goal of this chapter is to identify neuroblastomas as either favorable 

histology or unfavorable histology as designated by the Shimada classification, or to 

identify a neuroblastoma tumor as treated.  Raman spectroscopy should allow for easy 

and accurate evaluation of tumor histology, since it provides a biochemical fingerprint of 

the measurement area. 

5.2 Materials and Methods 

5.2.1 Data Collection 

The Raman spectra of neuroblastoma from Chapters 2 and 3 were used for this 

study.  At the time of pathology review, the pathologists assigned a favorable or 

unfavorable diagnosis to the untreated neuroblastomas according to the Shimada 

classification.  Neuroblastomas which received treatment were all assigned to a single 

group, regardless of the Shimada classification pre-treatment, or the histological effects 

of the treatment.  Following data analysis, slides were re-reviewed by pathologists when 
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there was a discrepancy between the Raman classification and the pathology 

classification. 

5.2.2 Data Processing 

Data was processed using the same methodology as described in section 1.2.4 

and Appendix B.   

5.3 Results 

5.3.1 Preliminary Fresh Tissue Analysis 

The initial data set consisted of 106 spectra from 6 unfavorable neuroblastomas, 

114 spectra from 5 favorable neuroblastomas, and 82 spectra from 5 treated 

neuroblastomas, as shown in Table 5.2.  Tissue favorability was determined by an 

experienced pediatric pathologist based on the Shimada classification. 

 

Histology Number of Tissues Number of Spectra 
Unfavorable Neuroblastoma 6 106 
Favorable Neuroblastoma 5 114 
Treated Neuroblastoma 5 82 
Table 5.2 : Number of unfavorable, favorable, and treated neuroblastomas in preliminary 
fresh tissue analysis. 

 

Favorable and unfavorable tumors were classified with 95.3% sensitivity and 

93.8% specificity, as shown in Table 5.3.  Seven of 114 favorable spectra were 

misclassified, and five of 106 unfavorable spectra were misclassified.  Using the 

majority of individual spectra within a tissue to diagnose the whole tissue, favorable and 

unfavorable tumors were distinguished with 100% sensitivity and specificity. 
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Classification Results a 

  Subgroup Predicted Group Membership 

Total   Unfavorable Favorable 
Original Count Unfavorable 101 5 106 

Favorable 7 107 114 
% Unfavorable 95.3 4.7 100.0 

Favorable 6.1 93.9 100.0 
a. 94.5% of original grouped cases correctly classified. 
Table 5.3 : Classification of favorable and unfavorable neuroblastoma 
 

Figure 5.1 shows the mean spectrum for the preliminary favorable versus 

unfavorable neuroblastoma study.  Based on visual inspection of the mean spectrum, 

favorable histology tumors had higher protein levels based on the elevated peaks at 

1447, 1555, and 1660 cm-1 and the shoulder at 1264 cm-1.  Favorable tumors also 

seemed to exhibit increased amino acid peaks at 754, 938, 1004, 1034, 1210, and 1620 

cm-1.  These peaks are marked for visual clarity. 

 

 
Figure 5.1 : Mean spectra of favorable and unfavorable neuroblastoma 
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When classifying between treated and untreated neuroblastoma, favorable and 

unfavorable neuroblastoma were combined into a single untreated group.  At the 

spectral level, treated and untreated tumors were separated with 93.2% sensitivity and 

70.7% specificity as shown in Table 5.4.  At the tissue level, all eleven untreated 

neuroblastoma were correctly identified, while three of the five treated neuroblastoma 

were correctly identified. 

 
Classification Results a 

  Treated Predicted Group Membership 

Total   Untreated Treated 
Original Count Untreated 205 15 220 

Treated 24 58 82 
% Untreated 93.2 6.8 100.0 

Treated 29.3 70.7 100.0 
a. 87.1% of original grouped cases correctly classified. 

Table 5.4 : Classification results comparing untreated and treated neuroblastoma 
 
 

One of the effects of treatment may be maturation from neuroblastoma to 

ganglioneuroma.  When treated neuroblastoma was compared with ganglioneuroma, 

they were differentiated with 90.2% sensitivity and 97.4% specificity, as shown in Table 

5.5.  Using the majority spectra rule, all ganglioneuroma spectra were correctly 

identified and four out of five treated neuroblastoma tissues were correctly identified. 

 
Classification Results a 

  Subgroup Predicted Group Membership 

Total 
  Ganglioneurom

a Treated 
Original Count Ganglioneuroma 184 5 189 

Treated 8 74 82 
% Ganglioneuroma 97.4 2.6 100.0 

Treated 9.8 90.2 100.0 
a. 95.2% of original grouped cases correctly classified. 

Table 5.5 : Classification of ganglioneuroma and treated neuroblastoma 
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Finally, a combined data set of untreated neuroblastoma, treated neuroblastoma, 

and ganglioneuroma were compared.  Figure 5.2 shows the discriminant function 

analysis plot for this classificiation, and the mean spectrum for each type of tissue.  

Note that there seems to be a clear progression from untreated tumor towards 

ganglioneuroma as treatment is applied.  Classification results are shown in Table 5.6. 

 
Classification Results a 

  Subgroup Predicted Group Membership 

Total   Unfavorable Favorable Treated 
Original Count Unfavorable 92 11 3 106 

Favorable 5 99 10 114 
Treated 13 16 53 82 

% Unfavorable 86.8 10.4 2.8 100.0 
Favorable 4.4 86.8 8.8 100.0 
Treated 15.9 19.5 64.6 100.0 

a. 80.8% of original grouped cases correctly classified. 

Table 5.6 : Classification of unfavorable, favorable, and treated neuroblastoma 
 

Visual inspection of the mean spectra peaks showed that treated 

neuroblastomas displayed a strong shoulder near 1240 cm-1 differentiating it from 

untreated neuroblastoma and ganglioneuroma.  This might correlate to higher 

concentrations of collagenous stroma in treated neuroblastoma.  Treated 

neuroblastoma also appeared to differ from ganglioneuroma in the region 1516-1622 

cm-1.  This is a region rich in protein and amino acids (Socrates, G., 2001). 

Finally, a case study of three tumors from one patient was performed.  One 

sample was available from the time of diagnosis, one sample was available following 

tumor treatment, and one sample was resected from an extradural brain metastasis one 

year following diagnosis.  Figure 5.3 shows representative histology images from each 

tissue sample and the results of discriminant function analysis. 
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Figure 5.2 : The mean spectra of untreated neuroblastoma, treated neuroblastoma, and 
ganglioneuroma with discriminant function analysis results shown. 
 

Discriminant function analysis separated the diagnosis and treated sample with 

100% sensitivity and specificity.  This is consistent with the maturation shown in the 

histology images.  The metastatic sample had two spectra which were diagnosed as the 

original tumor at the time of diagnosis.  On examination of the tumor histology, the 

metastatic tumor sample showed a mixture of ganglionic maturing cells and immature 

neuroblasts, which were prevalent in the original sample.  This likely explains the 

overlap between the two samples. 
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Figure 5.3 : Discriminant function analysis and histology images of three tumors from 
one patient. 
 
 
 Once again, visual inspection of the Raman spectra for each sample showed that 

the treated sample had higher peaks at 719, 1000, 1031, 1093, 1152, 1444, 1547, 

1578, 1604, 1621,and 1659 cm-1, in addition to the characteristic shoulder around 1240 

cm-1.  Again, these peaks may all be associated with various protein components.  Also 

of note, there was a strong peak at 960 cm-1 in the Raman spectra of the metastatic 

sample.  The biochemical origin of that peak could not be determined. 

5.3.2 Preliminary Fresh and Frozen Tissue Analysis 

Analysis of the original fresh neuroblastoma tissues showed promising results for 

distinguishing unfavorable, favorable, and treated neuroblastoma, and in distinguishing 

treated neuroblastoma from ganglioneuroma.  Following this early analysis, frozen 
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tumors were included in the study to determine if they offered the same classification 

potential.  Table 5.7 shows the number of fresh and frozen tissues and spectra available 

for the preliminary fresh and frozen analysis. 

 

 Fresh Frozen 
 Tissues Spectra Tissues Spectra 
Untreated 16 257 5 63 
     Favorable 8 130 4 47 
     Unfavorable 8 127 1 16 
Treated 9 159 6 78 
Ganglioneuroma 14 206 2 22 
Table 5.7 : Data collected for fresh versus frozen study 

 

The mean spectra of fresh and frozen favorable, unfavorable, and treated 

neuroblastoma are shown in Figure 5.4.  For each tissue type, the mean fresh and 

frozen spectra are extremely similar. 

When frozen treated and untreated neuroblastoma were classified using the 

fresh tissue model, 10 of 78 untreated neuroblastoma spectra and 12 of 63 treated 

neuroblastoma spectra were misclassified (Table 5.8).  As mentioned in Chapter 3, 

however, some of the frozen, treated neuroblastomas had nests of immature neuroblast 

cells although the majority of the tissue was composed of mature cells.  

Misclassifications of treated spectra may actually represent identification of immature 

cells within a sample which otherwise displays characteristics of a treated 

neuroblastoma. 
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Figure 5.4 : fresh (solid black line) and frozen (dashed red line) mean spectra of 
unfavorable, favorable, and treated neuroblastoma 
 
 

Classification Results a,b 

   Treated Predicted Group Membership 

Total    untreated treated 
Cases Selected Original Count untreated 231 26 257 

treated 43 116 159 
% untreated 89.9 10.1 100.0 

treated 27.0 73.0 100.0 
Cases Not Selected Original Count untreated 51 12 63 

treated 10 68 78 
% untreated 81.0 19.0 100.0 

treated 12.8 87.2 100.0 
a. 83.4% of selected original grouped cases correctly classified. 
b. 84.4% of unselected original grouped cases correctly classified. 
Table 5.8 : Classification of treated and untreated frozen neuroblastoma (“cases not 
selected” row) based on classification model of fresh neuroblastoma (“cases selected 
row) 
 

Neuroblastoma morphology shifts to look more similar to ganglioneuroma when it 

is treated.  When frozen treated neuroblastoma and ganglioneuroma spectra were 

compared based on the model of fresh tissues, ganglioneuroma was identified 100% of 

the time, and only 4 of 78 treated neuroblastoma spectra were misclassified, as shown 

in Table 5.9. 
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Classification Results a,b 

   Subgroup Predicted Group Membership 

Total    Gn tNB 
Cases Selected Original Count 

dimension3 

Gn 196 10 206 
tNB 24 135 159 

% 
dimension3 

Gn 95.1 4.9 100.0 
tNB 15.1 84.9 100.0 

Cases Not Selected Original Count 
dimension3 

Gn 22 0 22 
tNB 4 74 78 

% 
dimension3 

Gn 100.0 .0 100.0 
tNB 5.1 94.9 100.0 

a. 90.7% of selected original grouped cases correctly classified. 
b. 96.0% of unselected original grouped cases correctly classified. 

Table 5.9 : Classification of treated and ganglioneuroma frozen spectra (“cases not 
selected” row) based on classification model of fresh spectra (“cases selected row) 
 

 Fresh tissues were not classified based on the frozen model because of the 

small size of the frozen data set.   

5.4 Conclusions 

This is the first study using Raman spectroscopy to identify histologic features of 

neuroblastoma tumors.  Untreated tumors were classified according to the gold 

standard Shimada classification, as assigned by experienced pediatric pathologists.  

Favorable and unfavorable were distinguished with 100% sensitivity and specificity at 

the tissue level.   

Unfavorable and favorable tumors were also combined into an untreated group 

and compared to treated tumors.  Effects of treatment can include maturation and 

necrosis.  When compared with untreated neuroblastoma and with untreated 

ganglioneuroma, untreated tumors were always differentiated from treated with 100% 

sensitivity at the tissue level.  Some treated tumors, however, were still misclassified as 

untreated.  This could be due to specific histologic features within the misclassified 

cases. 
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By visual examination, treated neuroblastomas exhibited a shoulder at 1240 cm-1 

and an increased signature in the range of 1516-1622 cm-1.  These may be due to 

increased protein and amino acid levels.  Consultation with an experienced biologist or 

biochemist may provide a more complete understanding of the underlying biochemical 

changes from tissue to tissue. 

Finally, frozen tissues were examined to gauge their similarity to the fresh 

tissues.  Very few frozen tissues were available, so it was not possible to build a frozen 

model and then test it on fresh tissues.  When the frozen tissue spectra which were 

available were tested based on the fresh model, there was high sensitivity in judging 

between untreated and treated neuroblastoma and between treated neuroblastoma and 

ganglioneuroma.  In the future, more frozen tissues will be tested, and a more in-depth 

comparison between fresh and frozen unfavorable, favorable, and treated 

neuroblastoma will be performed. 

This research opens a new door for both clinical and basic science cancer 

research using Raman spectroscopy.  Previous research used Raman spectroscopy to 

distinguish between normal tissue and cancerous tissue, or between two types of 

cancerous tissue, however, it did not identify specific subtypes or prognostic groups 

within a cancer.   

Rapid identification of aggressive and non-aggressive cancers through an 

objective methodology offers a great clinical advance.  Although classification 

methodologies such as the Shimada classification offer a somewhat objective approach 

with fixed parameters for each grouping, results can still vary based on the area of 

tissue sampled or the pathologist’s count of the specific features of the tumor.  Raman 
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spectroscopy can reduce the subjectiveness of this identification by measuring the 

specific biochemical constituents.  It can even reduce the error introduced by sampling 

different areas of the tissue if a scan is performed over several regions of the tissue. 

Raman spectroscopy also has potential to identify the effects of treatment on 

neuroblastoma.  Once a larger database is developed, it may have the sensitivity to 

identify exact changes due to drug treatment, including maturation or necrosis.  At a 

basic science level, this may allow researchers to better understand the effects of 

treatments on tumors of a known histology through analysis of the Raman spectra.  

Furthermore, periodic monitoring of patients throughout treatment can also be used to 

identify a tumor’s response to treatment.  This could allow clinicians to quickly evaluate 

the effects of a new treatment to determine if it is the optimal treatment or if another 

treatment should be used. 
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CHAPTER 6 BLINDED STUDY WITH CHILDREN’S ONCOLOGY GR OUP TO 

IDENTIFY FAVORABLE, UNFAVORABLE, AND TREATED NEUROB LASTOMA 

6.1 Introduction 

In order to prove the diagnostic capability of Raman spectroscopy, it must be 

used in a truly blinded study, and then in prospective, blinded studies.  This chapter 

represents the first step towards proving diagnostic clinical capability in a blinded study 

performed in conjunction with the Children’s Oncology Group, a national tumor bank. 

Prior to this study, all human clinical studies were performed using the same 

Leica 20x objective.  This objective was damaged immediately before receiving the 

shipment of samples from the Children’s Oncology Group, and the new samples had to 

be measured with new lenses.  This introduced an additional layer of variability into the 

data.  In addition to describing the blinded study, this chapter also outlines the methods 

we used in an attempt to join our original data set with a blinded data set measured with 

another lens. 

6.2 Materials and Methods 

6.2.1 Sample Procurement 

In order to perform a truly blinded study, the Children’s Oncology Group agreed 

to share eight samples each of favorable, unfavorable, and treated neuroblastoma.  All 

24 samples could not be obtained because they do not allow depletion of any single 

tumor within their collection.  However, they did share 22 samples.  It is not known 

which diagnostic group the two unsent samples came from. 
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6.2.2 Sample Measurement 

This experiment consisted of a training set of data which was used to build a 

diagnostic model, and a testing set of data, which the model was tested on.  The 

training data consisted of all fresh and frozen specimens previously collected and 

described.  The testing data consisted of the Raman spectra of the samples provided by 

the Children’s Oncology Group. 

Samples were individually wrapped in foil and placed in tissue cassettes by COG 

employees, then shipped overnight on dry ice.  Upon arrival, samples were place in a -

80°C freezer until measurement time. 

When samples were ready for measurement, they were removed from their 

wrapping and placed in an eppindorf tube or cryovial which was then filled with room 

temperature saline.  Samples were allowed to defrost for 30 minutes, and then they 

were removed from the vial and place on a glass microscope slide.  Following 

measurement, samples were replaced in their foil wrapping and tissue cassette and 

placed in the -80°C freezer for storage. 

As mentioned in the introduction, the microscope objective which was originally 

used for measurement was damaged prior to receiving the Children’s Oncology Group 

samples.  All samples were originally measured with a replacement 20x Nikon Plan-

Flour microscope objective and replaced in the freezer.  On data analysis, however, this 

data was incompatible with the previous data set collected with a Leica-brand lens (see 

results).  After it was determined that data from the Nikon lens was incompatible, all 

samples were re-tested with a Leica 20x objective identical to the original objective.   
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6.2.3 Data Processing 

Data was preprocessed as previously described.  For classification, the original 

intent was to perform Principal Component Analysis on the training data and apply the 

results to the testing data, then perform discriminant function analysis on the training 

data and apply those results to the training data.  Because of the spectral differences 

from objective to objective, however, this method was not feasible.  The results section 

provides an in-depth description of the methods used throughout data analysis and the 

justification for each step of the analysis. 

The end result of the analysis was three methods of discriminant function 

analysis.  Because the study was blinded, there was no way to know which method was 

best without first consulting with the Children’s Oncology Group.   

A separate analysis was performed for treated vs untreated and for favorable vs 

unfavorable.  Because treated neuroblastoma can cover a broad range of histologies, 

all treated neuroblastomas were excluded from the training data set when analyzing 

tumor favorability.  That is why tumors marked as ‘treated’ also have a favorable or 

unfavorable diagnosis. 

6.3 Results 

6.3.1 Nikon Lens Results 

Figure 6.1 shows the mean spectrum of processed data from the favorable 

histology training group, the unfavorable histology training group, the treated histology 

training group, and the Nikon lens testing group, which was composed of the samples 

sent from the Children’s Oncology Group.  Visual examination shows a clear difference 

between the original training data and the new data measured with the Nikon lens. 
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Clearly, there is a difference in the underlying background signal measured 

between the two lenses, as exhibited by the varying signal intensities.  It is important to 

note, however, that most of the key peaks still align, just at different intensities.  The two 

types of lenses used allow varying amounts of light into the objective, which may cause 

the differences in the underlying backgrounds.  It may be possible to better align the 

peak intensities through software processing of the Raman spectra.   

 

 
Figure 6.1 : mean spectra of favorable, unfavorable, and treated training data, and 
mean spectrum of unknown data measured with Nikon lens 
 
 

Further examination of the mean spectra shows that the mean spectra of the 

unfavorable, favorable, and treated histology training groups each have a maximum of 

about one, meaning that the data is relatively homogenous.  Examination of the testing 

data measured with the Nikon lens, however, showed a maximum value of only 

approximately .95.  This signifies a less homogenous data set, and likely signals 

multiple populations within the data set.  The data was examined more in-depth to 
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check for different populations based on the location of the maximum value for each 

individual spectrum.  The training data had very few spectra where the maximum value 

was outside the range of 1300-1350 cm-1.  However, the Nikon testing data displayed 

four distinct populations, as shown in Figure 6.2.  Note that the solid black line is the 

mean spectrum of the training data measured by the Leica lens and the red, blue, 

green, and yellow lines are the mean spectra from the four Nikon populations. 

  

 
Figure 6.2 : Mean spectrum of all training data measured with Leica lens (black) and 
four distinct populations measured by the Nikon lens. 
 
 

Because the Raman spectra of the new tissue samples measured with the Nikon 

lens were so different from the Raman spectra of the training samples measured with 

the Leica lens, it was not possible to identify the histology of the new samples using 

existing processing and diagnostic methods.  Data collected using the Nikon lens was 

saved for future use, once processing procedures are adjusted to solve this problem.  In 
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the meantime, a replacement Leica lens identical to the original Leica lens was 

obtained, and samples were re-measured. 

6.3.2 Leica Lens Results 

Figure 6.3 shows the mean Raman spectra of the three training data groups 

measured with the original Leica lens and the Raman spectra of the unknown data 

measured with the replacement Leica lens.  There is much better agreement between 

the two Leica lenses than between the Leica and Nikon lens, however, minor 

differences still exist.  If the original Leica lens was damaged over time, this would 

slowly change the amount of light let in by the lens.  This could be part of the reason for 

the measurement differences between the two lenses.  Alternately, the lenses might 

simply provide slightly different signals due to small differences in the manufacturing 

process. 

 

 
Figure 6.3 : Mean spectrum of unfavorable, favorable, and treated training data with 
unknown data measured using the replacement Leica lens 
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Data was reviewed to remove any spectra with the maximum value outside the 

range of 1300 to 1350 cm-1, and then the full spectral data was imported into SPSS.  

The spectra removed from this process will be referred to as ‘obvious outliers’.  Data 

review was also performed to remove any spectra with lower quality Raman spectra, 

potentially due to out of focus measurements, poor sample quality, or excess 

measurement noise.  These spectra will be referred to as ‘potential outliers’.  For each 

method, data analysis was performed twice: once using all data with only obvious 

outliers removed, and once using data with both obvious outliers and potential outliers 

removed.  The three classification methods which were used for data analysis are 

described below. 

6.3.3 Method 1: Key Peaks from 600-1800 cm-1 

Data classification was first attempted using principal component analysis 

followed by discriminant function analysis.  This did not work because the new data did 

not math closely enough with the old data to be compressed through principal 

component analysis then analyzed with discriminant function analysis.  Next, 

discriminant function analysis without principal component analysis using all peaks as 

input was attempted.  Again, this failed.   

Visual examination of the Raman spectra between the two lenses showed clear 

intensity differences in some regions.  It was hypothesized that classification difficulties 

might be partly caused by including those regions in data analysis.  To try to circumvent 

this problem, peak selection was performed using the method described in section 

4.2.2, based on the standardized canonical discriminant function results of discriminant 

function analysis using all peaks.   
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For classifying between treated and untreated neuroblastoma, the selected 

peaks of interest were 643.7, 655.9, 663.0, 666.1, 667.1, 699.5, 843.9, 855.6, and 

1402.9 cm-1.  Overall classification of the training data was 77.4%.  Table 6.1 shows the 

results excluding potential and obvious outliers, and Table 6.2 shows the classification 

results excluding only the obvious outliers. 

 

Classification Results a 

  treatment Predicted Group Membership 

Total   untreated Treated 
Original Count untreated 215 50 265 

treated 43 103 146 
Ungrouped cases 116 103 219 

% untreated 81.1 18.9 100.0 
treated 29.5 70.5 100.0 
Ungrouped cases 53.0 47.0 100.0 

a. 77.4% of original grouped cases correctly classified. 
Table 6.1 : Classification results of untreated versus treated tissue using select peaks in 
the range from 600-1800 and excluding potential and obvious outliers. 
 
 

Classification Results a 

  treatment Predicted Group Membership 

Total   untreated treated 
Original Count untreated 215 50 265 

treated 43 103 146 
Ungrouped cases 134 120 254 

% untreated 81.1 18.9 100.0 
treated 29.5 70.5 100.0 
Ungrouped cases 52.8 47.2 100.0 

a. 77.4% of original grouped cases correctly classified. 

Table 6.2 : Classification results of untreated versus treated tissue using select peaks in 
the range from 600-1800 cm-1 excluding only obvious outliers. 
 
 

For classifying between favorable and unfavorable neuroblastoma, the peaks of 

interest were 614.1, 621.8, 622.3, 626.3, 631.5, 637.6, 638.6, 725.7, 744.7, 768.7, 

797.5, 846.8, 825.2, 860.6, 917.1, 924.8, 951.8, 1152.2, 1158.7, 1173.5, and 1312.9  

cm-1.  This represents significantly more diagnostic peaks than were necessary for 



www.manaraa.com

97 

 

discriminating between treated and untreated neuroblastoma, however, overall 

classification of the training data was 93.6%.  Table 6.3 shows the results excluding 

potential and obvious outliers, and Table 6.4 shows the classification results excluding 

only the obvious outliers. 

 

Classification Results a 

  Subgroup Predicted Group Membership 

Total   UNb FNb 
Original Count UNb 123 12 135 

FNb 5 125 130 
Ungrouped cases 61 158 219 

% UNb 91.1 8.9 100.0 
FNb 3.8 96.2 100.0 
Ungrouped cases 27.9 72.1 100.0 

a. 93.6% of original grouped cases correctly classified. 
Table 6.3 : Classification results of favorable versus unfavorable tissue using select 
peaks in the range from 600-1800 and excluding potential and obvious outliers. 
 
 

Classification Results a 

  Subgroup Predicted Group Membership 

Total   UNb FNb 
Original Count UNb 123 12 135 

FNb 5 125 130 
Ungrouped cases 71 183 254 

% UNb 91.1 8.9 100.0 
FNb 3.8 96.2 100.0 
Ungrouped cases 28.0 72.0 100.0 

a. 93.6% of original grouped cases correctly classified. 

Table 6.4 : Classification results of favorable versus unfavorable tissue using select 
peaks in the range from 600-1800 cm-1 excluding only obvious outliers. 
 

6.3.4 Method 2: Full Data Range from 600-1220 cm-1 

Upon in-depth examination of the mean spectra over the range of 600-1800 cm-1 

and examination of the key diagnostic peaks which were selected using the 

standardized canonical discriminant functions, it was determined that the mean 

spectrum of the replacement Leica lens closely matched the Raman fingerprint of the 
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training data measured with the original Leica lens below about 1250 cm-1.  Different 

cutoff points were iteratively tested to find the maximum classification within the training 

set.  This was done by performing discriminant function analysis over all the peaks from 

the range of 600 cm-1 to the cutoff points being tested.  Results of treated versus 

untreated analysis and favorable versus unfavorable analysis were recorded at each 

cutoff point.  Optimal results for both groups were reached using a cutoff point of 1220 

cm-1, so analysis was performed over the range of 600-1220 cm-1. 

Figure 6.4 shows the mean spectrum of the new lens and the three training 

groups over the full data range (left), and over the truncated data range (right).    Notice 

that the black line which signifies the new testing data matches much closer with the 

training data in the right hand image. 

Table 6.5 shows the classification results using all peaks in the range from 600-

1220 cm-1 to distinguish between treated and untreated neuroblastoma with obvious 

and potential outliers excluded, and Table 6.6 shows the same results excluding only 

obvious outliers.  Classification of the training data was 78.3%. 

 

Classification Results a 

  Treatment Predicted Group Membership 

Total   untreated treated 
Original Count Untreated 223 42 265 

Treated 47 99 146 
Ungrouped cases 143 76 219 

% Untreated 84.2 15.8 100.0 
Treated 32.2 67.8 100.0 
Ungrouped cases 65.3 34.7 100.0 

a. 78.3% of original grouped cases correctly classified. 

Table 6.5 : Classification results of untreated versus treated tissue using all peaks from 
600-1220 cm-1 and excluding potential and obvious outliers. 
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Figure 6.4 : Mean Raman spectra of favorable, unfavorable, and treated spectra 
measured with original Leica lens and unknown spectra measured with replacement 
Leica lens before (top) and after (below) data truncation 
 
 
 

Classification Results  

  treatment Predicted Group Membership 

Total   untreated treated 
Original Count untreated 223 42 265 

treated 47 99 146 
Ungrouped cases 164 90 254 

% untreated 84.2 15.8 100.0 
treated 32.2 67.8 100.0 
Ungrouped cases 64.6 35.4 100.0 

a. 78.3% of original grouped cases correctly classified. 
Table 6.6 : Classification results of untreated versus treated tissue using all peaks from 
600-1220 cm-1 and excluding only obvious outliers. 
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Table 6.7 shows the classification results using all peaks in the range from 600-

1220 cm-1 to distinguish between favorable and unfavorable histology neuroblastoma 

with obvious and potential outliers excluded, and Table 6.8 shows the same results 

excluding only obvious outliers.  Classification of the training data was 84.5%. 

 
 

Classification Results 

  Subgroup Predicted Group Membership 

Total   UNb FNb 
Original Count UNb 118 17 135 

FNb 24 106 130 
Ungrouped cases 119 100 219 

%UNb 87.4 12.6 100.0 
FNb 18.5 81.5 100.0 
Ungrouped cases 54.3 45.7 100.0 

a. 84.5% of original grouped cases correctly classified. 
Table 6.7 : Classification results of unfavorable versus favorable tissue using all peaks 
from 600-1220 cm-1 and excluding potential and obvious outliers. 
 
 

 Classification Results a 

  Subgroup Predicted Group Membership 

Total   UNb FNb 
Original Count UNb 118 17 135 

FNb 24 106 130 
Ungrouped cases 133 121 254 

%UNb 87.4 12.6 100.0 
FNb 18.5 81.5 100.0 
Ungrouped cases 52.4 47.6 100.0 

a. 84.5% of original grouped cases correctly classified. 
Table 6.8 : Classification results of favorable versus unfavorable tissue using all peaks 
from 600-1220 cm-1 and excluding only obvious outliers. 
 

6.3.5 Method 3: Key Peaks from 600-1220 cm-1 

Since classification results were so promising using the full range of data from 

600-1220 cm-1, individual peak selection was performed within this specific range.  For 

classifying between treated and untreated neuroblastoma, the peaks of interest were 

614.1, 617.1, 618.2, 625.3, 704.5, 743.7, 854.6, 1015.0, 1041.6, 1051.1, 1052.2, 
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1155.9, and 1202.9 cm-1.  They provided 81.5% accurate classification of the training 

data.  Table 6.9 shows the classification results using these peaks to distinguish 

between treated and untreated neuroblastoma with obvious and potential outliers 

excluded, and Table 6.10 shows the same results excluding only obvious outliers.   

 

Classification Results a 

  treatment Predicted Group Membership 

Total   untreated treated 
Original Count untreated 231 34 265 

treated 42 104 146 
Ungrouped cases 144 75 219 
%untreated 87.2 12.8 100.0 
treated 28.8 71.2 100.0 
Ungrouped cases 65.8 34.2 100.0 

a. 81.5% of original grouped cases correctly classified. 
Table 6.9 : Classification results of untreated versus treated tissue using 13 select peaks 
from 600-1220 cm-1 and excluding potential and obvious outliers. 
 
 

Classification Results a 

  treatment Predicted Group Membership 

Total   untreated treated 
Original Count untreated 231 34 265 

treated 42 104 146 
Ungrouped cases 165 89 254 
%untreated 87.2 12.8 100.0 
treated 28.8 71.2 100.0 
Ungrouped cases 65.0 35.0 100.0 

a. 81.5% of original grouped cases correctly classified. 

Table 6.10 : Classification results of untreated versus treated tissue using 13 select 
peaks from 600-1220 cm-1 and excluding only obvious outliers. 
 
 

The number of peaks could be further reduced to 8 peaks while still maintaining 

80% classification of the training data.  These 8 peaks were 704.5, 743.7, 854.7, 

1015.1, 1041.7, 1051.1, 1052.0, and 1202.9 cm-1.  Table 6.11 shows the classification 
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results using these peaks with obvious and potential outliers excluded, and Table 6.12 

shows the same results excluding only obvious outliers.   

 

Classification Results a 

  treatment Predicted Group Membership 

Total   untreated treated 
Original Count untreated 229 36 265 

treated 46 100 146 
Ungrouped cases 143 76 219 
%untreated 86.4 13.6 100.0 
treated 31.5 68.5 100.0 
Ungrouped cases 65.3 34.7 100.0 

a. 80.0% of original grouped cases correctly classified. 
Table 6.11 : Classification results of untreated versus treated tissue using 8 select peaks 
from 600-1220 cm-1 and excluding potential and obvious outliers. 
 

Classification Results a 

  treatment Predicted Group Membership 

Total   untreated treated 
Original Count untreated 229 36 265 

treated 46 100 146 
Ungrouped cases 163 91 254 
%untreated 86.4 13.6 100.0 
treated 31.5 68.5 100.0 
Ungrouped cases 64.2 35.8 100.0 

a. 80.0% of original grouped cases correctly classified. 
Table 6.12 : Classification results of untreated versus treated tissue using 8 select peaks 
from 600-1220 cm-1 and excluding only obvious outliers. 
 

For classifying between favorable and unfavorable neuroblastoma, the selected 

peaks of interest were 614.1, 618.2, 622.3, 626.3, 631.5, 637.6, 680.3, 715.6, 744.7, 

768.7, 825.2, 846.8, 917.1, 924.8, 951.8, 1152.2, 1158.7, 1175.3, 1184.5, and cm-1.  

Table 6.13 shows the classification results using these peaks with obvious and potential 

outliers excluded to separate unfavorable and favorable neuroblastoma, and Table 6.14 

shows the same results excluding only obvious outliers.  The overall classification was 

86.4%. 
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Classification Results a 

  Subgroup Predicted Group Membership 

Total   UNb FNb 
Original Count UNb 119 16 135 

FNb 20 110 130 
Ungrouped cases 111 108 219 

%UNb 88.1 11.9 100.0 
FNb 15.4 84.6 100.0 
Ungrouped cases 50.7 49.3 100.0 

a. 86.4% of original grouped cases correctly classified. 
Table 6.13 : Classification results of unfavorable and favorable tissue using select peaks 
from 600-1220 cm-1 and excluding potential and obvious outliers. 
 

Classification Resultsa  

  Subgroup Predicted Group Membership 

Total   UNb FNb 
Original Count UNb 119 16 135 

FNb 20 110 130 
Ungrouped cases 128 126 254 
%UNb 88.1 11.9 100.0 
FNb 15.4 84.6 100.0 
Ungrouped cases 50.4 49.6 100.0 

a. 86.4% of original grouped cases correctly classified. 
Table 6.14 : Classification results of untreated versus treated tissue using 8 select peaks 
from 600-1220 cm-1 and excluding only obvious outliers. 
 

Peaks selected for treated versus untreated classification are marked in purple in 

Figure 6.5, and peaks selected for favorable versus unfavorable classification are 

marked in orange. 
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Figure 6.5 : Key peaks in the range of 600-1220 cm-1 for classification of unfavorable, 
favorable, and treated neuroblastoma  
 
 
6.3.6 Comparison of Classification Methods 

The classification results for each method used to discriminate between treated 

and untreated neuroblastoma are shown in Table 6.15.  A diagnosis was only assigned 

to each sample if at least 60% of the individual spectra had the same diagnosis.  

Samples with 50-60% agreement were not given a diagnosis.  Results are shown for 

analyses excluding only obvious outliers and analyses excluding both obvious and 

potential outliers.  There is also an ‘overall diagnosis’ which was made based on the 

combination of the three methods, if they agreed.  The ‘value’ column represents the 

average diagnosis for each tissue, where 0 is unfavorable or untreated, and 1 is 

favorable or untreated.  Samples with a value of less than 0.4 were untreated (purple), 

and samples with a value of more than 0.6 were treated (yellow).   

Likewise, Table 6.16 shows the same results used to discriminate between 

favorable and unfavorable neuroblastoma.  Samples with a value of less than 0.4 were 

unfavorable (green), and samples with a value of more than 0.6 were favorable (red). 
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 TREATMENT  
 453 spectra 419 spectra  

 600- 
1800 
15pk  

600-
1200  
All  

600-
1200  
13 pk 

600-
1200  
8 pk  

600- 
1800 
15pk  

600-
1200  
All  

600-
1200  
13 pk 

600- 
1200 
8pk  treatment 

2001-07-P6020 0.86 1.00 1.00 1.00 0.86 1.00 1.00 1.00 treated 

2001-12-P8023 0.50 0.25 0.33 0.17 0.63 0.25 0.50 0.25 untreated 

2002-10-P8047 0.00 0.17 0.08 0.00 0.00 0.18 0.09 0.00 untreated 

2002-11-P8008 0.78 0.56 0.67 0.67 0.71 0.57 0.57 0.57 treated 

2002-12-P6025 0.73 0.18 0.09 0.18 0.78 0.22 0.11 0.22 untreated 

2003-01-P8006 0.42 0.67 0.83 0.75 0.50 0.70 0.90 0.80 treated 

2003-02-P8005 0.38 0.08 0.08 0.08 0.33 0.00 0.00 0.00 Untreated 

2003-06-P8029 0.15 0.38 0.15 0.08 0.15 0.38 0.15 0.08 Untreated 

2003-08-P8061 0.60 0.70 0.70 0.70 0.60 0.70 0.70 0.70 treated 

2003-10-P8055 0.67 0.58 0.33 0.33 0.67 0.58 0.33 0.33 Untreated 

2004-03-P0092 0.36 0.27 0.18 0.27 0.36 0.27 0.18 0.27 untreated 

2005-04-P0518 0.00 0.20 0.00 0.00 0.00 0.22 0.00 0.00 untreated 

2005-06-P0753 0.54 0.62 0.62 0.54 0.67 0.44 0.56 0.56 Treated 

2006-02-P0791 0.91 0.45 0.73 0.73 1.00 0.56 0.78 0.67 Treated 

2006-02-P0903 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Untreated 

2006-08-P0687 0.70 0.60 0.70 0.90 0.70 0.60 0.70 0.90 Treated 

2006-11-P0514 0.46 0.54 0.31 0.38 0.29 0.57 0.43 0.57 

2006-12-P0503 0.17 0.08 0.00 0.08 0.18 0.09 0.00 0.09 Untreated 

2007-01-P0160 0.25 0.17 0.00 0.00 0.25 0.17 0.00 0.00 Untreated 

2007-04-P0365 0.50 0.36 0.43 0.50 0.50 0.25 0.42 0.50 Untreated 

2007-05-P1011 0.85 0.23 0.31 0.31 0.85 0.23 0.31 0.31 Untreated 

2007-09-P0478 0.83 0.08 0.58 0.67 1.00 0.00 0.60 0.60 

Table 6.15 : Comparison of tissue-level results using each classification method for 
treated versus untreated neuroblastoma.  453-spectra results represent analysis with 
obvious outliers removed, and 419-spectra results represent analysis with obvious and 
potential outliers removed. 
 

As shown in the Tables 6.15 and 6.16, there is fairly good agreement among 

classification methods for most tissues.  However, some tissues, such as 2007-09-

P0478 exhibited a shift from 83% treated to 92% untreated depending on the set of 

peaks used for diagnosis.  In some cases, such as 2006-11-P0514, the diagnosis of the 

tissue shifted from one group to another when low-quality spectra were removed.   
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The right hand side of the tables shows the overall classification results.  When 

there was fairly good agreement between the three methods, an overall diagnosis was 

made.  However, samples which were still unclear were left blank. 

 

FAVORABILITY  

453 SPECTRA 419 SPECTRA  Final DX 

Tissue ID 
600-1800  
21 pk 

600-1200  
All  

600-1200  
19pk 

600-1800  
21 pk 

600-1800  
All 

600-1200  
19pk 

  

2001-07-P6020 0.86 0.43 0.57 0.86 0.43 0.57   

2001-12-P8023 0.75 0.67 0.75 0.63 0.63 0.75  favorable 

2002-10-P8047 0.50 0.25 0.17 0.45 0.18 0.09  unfav 

2002-11-P8008 0.56 0.56 0.44 0.71 0.57 0.57   

2002-12-P6025 0.73 0.45 0.45 0.78 0.56 0.56   

2003-01-P8006 0.92 0.67 0.50 0.90 0.60 0.40   

2003-02-P8005 0.77 0.46 0.38 0.83 0.42 0.33  unfav 

2003-06-P8029 0.46 0.08 0.23 0.46 0.08 0.23  unfav 

2003-08-P8061 0.60 0.20 0.40 0.60 0.20 0.40  unfav 

2003-10-P8055 0.75 0.67 0.67 0.75 0.67 0.67  favorable 

2004-03-P0092 0.55 0.27 0.27 0.55 0.27 0.27  unfav 

2005-04-P0518 0.80 0.60 0.60 0.78 0.56 0.56  favorable 

2005-06-P0753 0.54 0.62 0.62 0.56 0.56 0.67  favorable 

2006-02-P0791 0.73 0.55 0.73 0.67 0.56 0.78   

2006-02-P0903 0.92 0.08 0.25 0.92 0.08 0.25  unfav 

2006-08-P0687 0.70 0.60 0.70 0.70 0.60 0.70  favorable 

2006-11-P0514 0.77 0.69 0.46 0.86 0.71 0.43   

2006-12-P0503 0.92 0.58 0.42 0.91 0.64 0.45   

2007-01-P0160 0.58 0.33 0.42 0.58 0.33 0.42  unfav 

2007-04-P0365 0.93 0.50 0.64 0.92 0.50 0.58  favorable 

2007-05-P1011 0.77 0.54 0.69 0.77 0.54 0.69  favorable 

2007-09-P0478 0.75 0.67 0.58 0.80 1.00 1.00  favorable 

Table 6.16 : Comparison of tissue-level results using each classification method for 
favorable versus unfavorable neuroblastoma.  453-spectra results represent analysis 
with obvious outliers removed, and 419-spectra results represent analysis with obvious 
and potential outliers removed. 
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6.3.7 Comparison of Raman Diagnosis with COG Diagnosis 

Results from Children’s Oncology Group showed that Raman spectroscopy did 

not significantly distinguish between the blinded favorable, unfavorable, and treated 

samples.  Section 6.4 discusses several possible sources for classification error within 

this study, and suggests possible methods for improvement.  In the future, the data will 

be re-analyzed and results will be re-submitted to the Children’s Oncology Group. 

6.4 Conclusions 

Based on the results of the blinded study, the classification methodology must be 

further refined to improve classification.  Ideally, and ideal methodology will be 

established in the future, and the Children’s Oncology Group will share more of their 

samples for development of a complete pediatric cancer Raman spectroscopic 

database. 

At the time of preliminary analysis of unfavorable, favorable, and treated 

neuroblastoma, processing capability did not allow for in-depth peak wise analysis.  

Because SPSS now allows analysis of full spectral data, significant peak findings can 

be used to draw biochemical conclusions regarding the samples.  In the future, cancer 

biologists and biochemists will be consulted to correlate the significant peaks with 

biochemicals, which should allow conclusions to be drawn about the tumor biology. 

In the future, there are several ways to improve histologic classification.  A further 

refinement on the terms ‘favorable’, ‘unfavorable’, and ‘treated’ will improve diagnosis.  

Tumor favorability depends on age (a non-histologic factor); however, age is not related 

to the underlying tumor biochemistry.  Therefore, it should be removed as a factor from 

histologic diagnosis.  Instead, future Raman spectroscopic studies of in-house and 
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Children’s Oncology Group samples should examine the stromal index, MKI, and 

differentiation individually rather than favorability as a whole.   

Likewise, a quantification of treatment, such as maturation, necrosis, etc. should 

be used instead of simply defining treated and untreated neuroblastoma.  These 

specific descriptions have a concrete link to histology and tumor biochemistry and 

should allow more accurate Raman diagnosis.   

Finally, further development of the Raman tumor database with more samples 

will increase our classification ability.  Classification algorithms and processing 

techniques will also be continuously refined over time. 

Outside of classification of blinded tumor samples, this study raised concerns 

about the validity of processing and classification methodology when hardware 

components are changed on the Raman system.  The differences between the Leica 

brand lens and the Nikon brand lens were so pronounced that data from one could not 

be used to classify data from the other.  The differences between the two Leica brand 

lenses were not as pronounced, however, lens-to-lens classification still posed a 

significant problem.  Future work must be done to address this major problem.   

Lenses are not the only spectrometer with a limited shelf life.  Other components 

which may degrade over time include the laser excitation source, filters, and gratings.  

Furthermore, interchangeable hardware components may be changed over time for 

application of one Raman probe to different applications.  The final software package 

developed for clinical use must be robust enough to handle the periodic change of 

hardware components without invalidation of the existing spectroscopic database.  
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Enhanced background subtraction and calibration techniques, as well as modifications 

to the data cataloging system should address this problem. 
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CHAPTER 7 IDENTIFICATION OF MYCN AMPLIFICATION IN N EUROBLASTOMA 

CELLS 

7.1 Introduction 

7.1.1 Genetic Factors Associated with Neuroblastoma Prognosis 

Several genetic factors are associated with neuroblastoma prognosis.  Known 

factors include amplification of the MYCN gene (myc myelocytomatosis viral related 

oncogene, neuroblastoma derived), change in cell ploidy (number of sets of 

chromosomes), changes to the 11q chromosome (long arm of chromosome 11), 

changes to the 1p chromosome (short arm of chromosome 1), and increase of genetic 

material on the 17q chromosome (long arm of chromosome 17) (Cohn, S. L. et al., 

2009).  The International Neuroblastoma Risk Group found that the genetic factors most 

significantly associated with disease prognosis included MYCN amplification, 11q 

changes, and cell ploidy.  Of these genetic factors, MYCN was the most significant.  

Their study found that the 5-year overall survival rate dropped from 82% in non-

amplified MYCN tumors (n=5,947 patients) to just 34% in MYCN amplified tumors 

(n=1,155 patients) (Cohn, S. L. et al., 2009). 

The MYCN proto-oncogene is amplified (50-400 copies/cell) in 20-25% of 

neuroblastomas (Maris, J. M. Matthay, K. K., 1999).  When found at normal expression 

levels, it is not hazardous; however, when found at increased expression levels, it helps 

turn healthy cells into cancerous cells.  It produces the MYCN phosphoprotein, which 

interacts with MAX and MAD proteins and leads to changes in several downstream 

pathways.   
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It is unknown exactly how MYCN works beyond binding with MAX and MAD, but 

it is known that it can affect the expression of literally hundreds of other genes (Eilers, 

M. Eisenman, R. N., 2008).  In general, it up-regulates genes involved in protein 

synthesis, ribosome creation, metabolism, and increasing cell mass, while it tends to 

down-regulate genes involved in stopping the cell cycle, causing cell adhesion, and 

allowing cell-to-cell communication (Eilers, M. Eisenman, R. N., 2008). 

7.1.2 Regulation of MYCN Expression 

Previous reports have shown that retinoic acid (vitamin A) can be used to control 

N-myc expression, and even cause neuroblastoma tumor cells to differentiate into 

neuron-like cells (Thiele, C. J. et al., 1985).  However, retinoic may not be an ideal 

model because it can cause differentiation.  Differentiation would cause significant 

changes in the biochemical composition and likely change the Raman signature of the 

cells, so another model is necessary. 

The MYCN gene is particularly difficult to test in cell cultures because it cannot 

be transfected into animal models (Lutz, W. et al., 1996).  This is a similar problem 

across many types of cells and many genes.  To address this general problem, Gossen 

and colleagues developed a methodology to create cell lines with controllable gene 

expression (Baron, U. et al., 1995; Gossen, M. Bujard, H., 1992; Gossen, M. et al., 

1995). 

Using this method, there are two series of transfections into the cell.  The first 

transfection contains the tTa and a plasmid for neomycin resistance.  Many cells are 

transfected in the first step.  Of those cells, only cells which exhibit tet-controlled 

luciferase expression are selected for the second round of transfection.  The second 
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transfection contains tetracycline-controlled cDNA for the gene of interest (NMYC in the 

case of this research), and another plasmid for hygromycin-resistance.    Finally, the 

selected cells must exhibit resistance to neomycin and hygromycin, and exhibit 

tetracycline-control of the gene.   

Clearly, creation of a tetracycline-inducible cell line is quite complicated and 

outside the scope of this research.  The following sections describe two cell lines 

previously developed by outside researchers which were considered for use in this 

study. 

7.1.2.1 TET21 Cell Line 

Lutz et al. created the first tetracycline-controlled cell line for neuroblastoma in 

1996 (Lutz, W. et al., 1996).  The original cell line used was SH-EP which is a sub clone 

of SK-N-SH.  They used the transfection method described by Gossen and Bujard 

(1992) to develop their cell line.  This cell line is an example of a TET-off system, 

because MYCN expression is highest when no tetracycline is present in the cell media.  

In this cell line, MYCN gene expression was increased 10-fold, and mRNA was 

increased at least 15-fold.  Also of note, light microscopy showed no morphological 

differences between the induced and non-induced cells.  

They found that increased MYCN expression increased the levels of ornithine 

decarboxylase and the level of α-prothymosin approximately three-fold.  It also caused 

an increase in DNA synthesis and reduced the cell cycle from 16.5 hours in control cells 

to 11.5 hours in MYCN-amplified cells.  Part of this was caused by a quicker transition 

(about 4 hours) from G0 to S phase in the MYCN-amplified cells.  The time to reach the 
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G2 phase was the same in both cell lines.  The MYCN-amplified cells also grew to 

higher confluence. 

Tests on the transfected cells led to several conclusions which can be applied to 

this experiment.  First immunofluorescence showed that all of the cells in the population 

responded to the MYCN induction.  This means that there should not be cell-to-cell 

variation in MYCN expression within a batch of treated of untreated cells.  Furthermore, 

both the control cell and tetracycline-induced cell MYCN proteins were able to bind with 

the MAX protein, so the pathway of the gene should be the same between the treated 

and untreated cell lines. 

When treated to amplify MYCN expression, MYCN protein was detectable in 4.5 

hours, and MAX protein was detectable after 5 hours.  Conversely, when amplified cells 

were treated to stop MYCN expression, the MYCN protein levels returned to normal 

after 4.5 hours. 

7.1.2.2 MYCN-3 Cell Line 

In 2005, Slack et al. described creation of a second neuroblastoma cell line, in 

which MYCN amplification could be controlled by tetracycline (Slack, A. et al., 2005).  

This cell line differs from the previous cell line because it displays MYCN amplification 

when treated with tetracycline, and it displays normal low-level MYCN when not treated 

with tetracycline.  This is an example of a TET-on gene expression system. 

They found the MYCN controls MDM2.  That stops p-53 apoptosis.  This cancels 

out the increased apoptosis caused my plain MYCN amplification.  MDM2 was 

increased 1.5-2.5x after NMYC amplification.  After induction, MYCN protein levels peak 

12-16 hours.  MDM2 was increased 2.8-3x after 24 hours MYCN induction. 
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7.1.3 Research Goal 

The goal of this chapter is to determine whether Raman spectroscopy can 

distinguish between cells with normal levels of MYCN expression and cells with 

increased MYCN expression.  It is unknown whether any changes detected would be 

due to increased MYCN protein expression or due to other downstream changes 

caused by increased MYCN expression. 

7.2 Materials and Methods 

7.2.1 Cell Culture 

All cell culturing was performed in a clean room under a negative-pressure hood.  

The Tet-on MYCN-3 cell line was provided by Dr. Jason Shohet (Texas Children’s 

Cancer Center, Houston, TX).  Cells were grown in RPMI 1640 media (Invitrogen) with 

10% tetracycline-free Fetal Bovine Serum (Invitrogen) and 1% penicillin/streptomycin 

(Invitrogen) supplementation.  MYCN was induced by adding 1 µg/mL doxycycline 

(Sigma Aldrich) to the media. 

For the preliminary study, we started with a T75 flask at 100% confluence 

(~5,000,000 cells).  Of those cells, 1/3 were re-plated into 3 T-25 flasks (totaling 1/9 of 

cells per T25).  The other 2/3 of the cells were discarded.  The following day, cells from 

one T-25 flask were isolated for Raman testing and PCR.  These cells were called the 

time=24 hour control sample.  At the same time, the media was changed in both of the 

other flasks, with one receiving plain media and the other receiving media with 

tetracycline supplementation.  24 hours later, cells from each flask were isolated for 

testing with Raman spectroscopy and PCR.  These cells were called the time=48 hour 

control and time=48 hour tet-on samples.  This experiment was repeated twice. 
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7.2.2 Cell Isolation 

Following trypsinization, cells were centrifuged for 5 minutes at 1200 RPM.  The 

supernate was removed, and cells were resuspended in phosphate buffered saline 

(PBS).  Cells were split between two centrifuge tubes so that three quarters of the cells 

were reserved for PCR and one quarter of the cells were used for Raman spectroscopy.  

Both tubes were centrifuged again at 1200 RPM for 5 minutes, and the supernate was 

removed.  The cells for Raman testing were resuspended in 1 mL of PBS.  Cells 

earmarked for PCR testing were either resuspended in lysing buffer and placed on ice 

until RNA isolation or placed in RNAlater for future RNA isolation. 

7.2.3 Raman Spectroscopy 

Following isolation, cells were moved from the clean room to a negative-pressure 

laboratory hood.   Cells were mixed with a micropipetter, and then a 200 µL drop was 

place on the end of a spectral grade UV-quartz slide.  UV-quartz was selected because 

it has a relatively low contribution to the Raman spectrum as shown in Figure 7.1.   
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Figure 7.1 : Representative Raman spectra of a MYCN-3 cell (top) and UV quartz slide 
(below) 
 
 

Raman spectroscopy was performed using a Renishaw InVia Raman microscope 

with 785nm excitation wavelength and 1200 lines/mm grating identical to the system 

used in tissue studies.  The slide was placed on the microscope objective with the drop 

end hanging over the edge, as shown in Figure 7.2.  Because the cells in suspension 

and the UV-quartz slide are relatively invisible at 785 nm, the penetration depth of the 

laser is long enough to also excite the chemical bonds in the microscope stage.  

Therefore, the cells are hung over the edge of the stage to ensure there is no 

measurement error due to Raman signal from the microscope stage. 
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Figure 7.2 : Schematic showing cell measurement setup 

 

A 60x Nikon dipping objective was used for all cell experiments.  The objective 

was lowered until it formed a bubble with the cell droplet, and then adjusted to focus on 

a single cell using the bright field microscope setting.  Healthy-appearing, round, single 

cells were selected for measurement, as shown in Figure 7.3.  The focus was adjusted 

so that cells were surrounded by a white ‘halo’ as shown in Figure 7.3.  Consistent 

measurement parameters of 10 accumulations of 10 seconds each at 50% power over 

the range 900-1800 cm-1 were used for all cells. We could not measure the Raman 

spectrum over the entire Raman range because UV quartz is not entirely invisible at 

785nm.  We found that the UV quartz caused significant interference below 900 cm-1. 

 

a b c  
Figure 7.3 : a) shows an ideal cell for measurement.  The cell is clearly separated from 
surrounding cells and displays a white ‘halo’.  b) and c) show examples of cells which 
would not be measured because they are out of focus and too close to each other. 
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  When the drop of cells dried up or cells started exhibiting visible changes, a 

new 200 µL drop was placed on the slide.  To ensure cells were as close to their true 

normal state as possible, measurements were only performed within two hours of cell 

isolation.  This time constraint allowed us to measure 12-16 cells per batch. 

7.2.4 Confirmation of MYCN Amplification Using PCR 

Polymerase chain reaction (PCR) was used to verify the results of tetracycline 

treatment and amplification of MYCN.  Specific details and results can be found in 

Appendix D. 

7.3 Results 

PCR results for trial 2 were inconclusive so it was excluded from further analysis.  

For trial 1, PCR showed that tetracycline-treated cells exhibited about 11.8 times more 

MYCN cDNA than the non-treated control cells.  The time = 24 hour control cells 

displayed approximately 3 times more MYCN cDNA than the time=48 hour control cells.  

These results are shown in detail in Appendix D. 

Following elimination of Raman spectra with measurement error, the resulting 

data set for this trial included 8 spectra from the t = 24 hour control cells, 6 spectra from 

the time = 48 h control cells, and 12 spectra from the time = 48h tet-on cells.  The mean 

spectrum of each group is shown in Figure 7.4.  As shown, the mean spectra for each 

group are extremely similar and display only subtle differences. 

Preliminary confirmatory analysis was performed on the data using all peaks over 

the range of 924-1800 cm-1.  924 cm-1 was selected as the minimum value because 

some variables had values of zero below 924 cm-1 which adversely affected 

discrimination results.  The three groups were separated with 100% accuracy as shown 
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by the SPSS output in Table 7.1.  Because the data set used was so small (26 spectra), 

in-depth peak analysis was not performed. 

 

 
Figure 7.4 : Mean spectrum of each group in the 3-flask experiment.   

 
Classification Results a 

 Group Predicted Group Membership 

Total  1 2 3 
Original Count 1 8 0 0 8 

2 0 6 0 6 
3 0 0 12 12 

imensi on2 

1 100.0 .0 .0 00.0 
2 .0 100.0 .0 00.0 
3 .0 .0 100.0 00.0 

a. 100.0% of original grouped cases correctly classified. 
Table 7.1 : Classification results using all peaks from 924-1800 cm-1.  Group 1is the 
control group at t=24h, Group 2 is the control 
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7.4 Conclusions 

This is the first study to examine the changing Raman spectra in a tetracycline-

controlled cell line.  Tetracycline was used to increase the level of MYCN RNA within 

the cells.  While it is not known if Raman spectroscopy is sensitive enough to measure 

the minor RNA changes in the cell, it should be sensitive enough to measure the effect 

of increased RNA and effects of other downstream regulatory changes, such as 

changes to the cell wall and receptors.   

A tetracycline-inducible cell line model was chosen for preliminary testing for 

several reasons.  First, the changes to the cell line caused by altered genetic 

expression are expected to be very subtle.  Testing a tissue model might obstruct the 

subtle changes of MYCN amplification due to the other extra-cellular components. 

Second, using a tetracycline-controlled cell lines allows isolation of all other 

experimental factors.  MYCN is associated with other poor prognostic factors, including 

tissue histology.  Testing MYCN amplification in a tissue model would inherently include 

histologic and other factors in the analysis, confounding the results.  Likewise, 

confounding variables would be hard to eliminate when testing several cell lines with 

and without MYCN amplification.  Tetracycline-inducible cell lines offer the most control 

over all other outside variables. 

An extensive study is needed to confirm the results found here.  A potential study 

design is described in Chapter 9, Future Work.  Hopefully, that research will further 

pinpoint which peaks are diagnostically useful in measuring MYCN amplification.  Once 

diagnostic peaks are selected, other neuroblastoma cell lines can be examined for 

MYCN amplification.  Catalogues exist which identify the MYCN genetic status of 
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various neuroblastoma cell lines (Thiele, C. J., 1998).  Finally, once MYCN amplification 

measurement is firmly established in cell lines, it can confidently be applied to tissue 

models.  MYCN amplification is routinely tested during pathology workup, so existing 

measurements could be used by simply correlating patient records to current Raman 

spectroscopic data (with proper Institutional Review Board approval). 

Some cells with MYCN deficiency still over express the MYCN protein (Cohn, S. 

et al., 1990; Wada, R. K. et al., 1993), but ALL cells with MYCN amplification have 

MYCN overexpression.  While it might not be possible to guarantee the presence of the 

MYCN gene amplification, Raman spectroscopy could definitely act as a screening tool 

for detecting tumors at risk for MYCN gene amplification.  If Raman could rule out 2/3 of 

cases which definitely do not have MYCN amplification and genetic tests were run only 

on the remaining 1/3 with MYCN protein, this would still offer a significant clinical 

improvement. 

In performing this study, other incidental findings were made (not mentioned in 

text) which may have scientific significance.  The Raman spectra of the MYCN3 cells 

exhibited changes when the CO2 level of the cell incubator was low, and when the cells 

changed from low- to high-confluence.  Further testing of these findings may show that 

Raman spectroscopy might have capability to act as a monitoring tool for cell viability. 

While the results of this experiment are promising, they can only be counted as 

preliminary.  Only 26 spectra were included in the data analysis.  In order to validate 

these findings, the experiment must be repeated.  Acquisition of more spectral data will 

also allow for identification of diagnostically significant peaks, which can provide 
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information about the underlying biochemical changes caused by increased MYCN 

gene expression levels.   
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CHAPTER 8 CONCLUSIONS 

8.1 Summary of Findings 

Neuroblastoma was successfully distinguished from other peripheral nervous 

system tumors, including ganglioneuroma, nerve sheath tumor, and 

pheochromocytoma.  It was also distinguished from healthy adrenal gland.  This is 

significant because it is the most common site of incidence for neuroblastoma.  Likewise 

it was successfully distinguished from tumors with similar histology, including 

rhabdomyosarcoma, non-Hodgkin lymphoma, and Ewing sarcoma.  Improved 

processing techniques allowed identification of specific peaks which were diagnostically 

significant.   

Frozen tissues were evaluated to see if they could be used within a diagnostic 

database.  Fresh tissue data classified frozen tissue data with 100% sensitivity and 

specificity.  Frozen tissue data could classify fresh tissue data with high sensitivity and 

specificity as well, although the inclusion of more data should further improve results. 

In-depth examinations of some prognostic markers of neuroblastoma were also 

performed.  Raman spectroscopy was able to identify favorable and unfavorable 

histology neuroblastomas, as judged by the Shimada classification in fresh and frozen 

tissues.  A blinded study of frozen tissues supplied by the Children’s Oncology Group 

was performed to further gauge classification ability. 

Finally, the tetracycline-controlled MYCN-3 cell line was used to identify the 

specific changes due to increased MYCN gene expression in a cell line.  These results 

can later be validated with additional testing.  It may be possible to extrapolate these 

findings to whole tissue samples. 
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8.2 Novelty and Significance 

This is the first research using Raman spectroscopy to identify cancer in a 

human pediatric model, specifically, neuroblastoma.  While many other types of cancer 

with higher incidence rates have been examined, tumors with lower incidence have 

largely been ignored.  Neuroblastoma was identified from other tumors of the peripheral 

nervous system, and from tumors which had very similar histologies.   

Identification of neuroblastoma from other small round blue cell tumors is 

especially significant, because current state of the art tests take two days or more.  

Rapid identification of neuroblastoma and other small round blue cell tumors offers a 

considerable improvement in patient care, and allows immediate treatment planning. 

This is the first study using Raman spectroscopy to identify the favorability of a 

tumor.  The histologic Shimada classification is an important factor in determining the 

prognosis of a neuroblastoma tumor.  Using Raman spectroscopy could offer a more 

objective evaluation of tumor histology (and underlying biochemistry) and remove inter-

observer bias.   

Evaluation of frozen tissues provided by the Children’s Oncology Group led to 

several questions which must be addressed in the future.  Specifically, better methods 

for classifying tumor histology were proposed, removing age from an otherwise 

biochemical-based histologic classification, and judging effect of treatment by specific 

histologic changes which occur in the tissue.  Additionally, future studies must also be 

performed to better understand the changes caused by switching components in the 

Raman spectrometer, and to address these issues, possibly through enhanced data 

processing techniques. 



www.manaraa.com

125 

 

Finally, this is the first study which measures changes in genetic expression 

within cells using Raman spectroscopy.  Genetic testing takes several days to reach a 

definitive diagnosis, whereas Raman spectroscopy can provide an immediate answer.  

Again, this offers a major benefit over the accepted testing method.   

If each of these individual testing components is combined into a single model, 

Raman spectroscopy could provide an immediate, complete diagnosis of 

neuroblastoma, including an objective measure of tumor aggressiveness.  If Raman 

spectroscopy is used in the operating room, physicians can begin development of a 

treatment plan before the surgery is complete.  Increased accuracy in diagnosis may 

improve development of treatment plans, leading to better outcomes, just as shorter 

time to treatment may improve outcomes. 

Improved diagnostic models may also allow for real-time scanning of tumor 

margins during tumor resection surgeries.  Normally in tumor resection, the area 

surrounding the tumor (margin) is sent to the pathology laboratory while the surgery is in 

progress.  An experienced pathologist examines the tissue for any remaining tumor 

cells.  If cells are found near the excision border, more tissue is removed and again sent 

for pathologic testing.  This process is expensive and time consuming.  It may be 

possible, instead, to scan the tumor margins intra-operatively for remaining tumor cells.  

It could offer quicker and more accurate results than frozen section analysis. 

Since this research was extremely successful in identifying neuroblastoma and 

its prognostic markers, another logical next step is to expand the research to other 

tumors.  Raman spectroscopy has strong potential to dramatically impact the field of 

cancer diagnosis if other tumors can be identified as well as neuroblastoma. 
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CHAPTER 9 FUTURE WORK 

While this work represents a great advance in clinical applications for Raman 

spectroscopy, specifically for advanced diagnosis of neuroblastoma, it naturally leads to 

many more questions and problems which must be addressed. 

9.1 Data Processing to Account for Changing Hardwar e Components 

Before Raman spectroscopy can be used clinically as a diagnostic tool, there 

must be a system developed which can account for changes in the Raman spectra due 

to switching out hardware components within the system.  For example, Chapter 6 

discusses the differences in the Raman spectra between two Leica-brand lenses and 

one Nikon-brand lens.  Each lens had different underlying background signals, even 

when measured on the same tissue.   

When Raman spectroscopy is used clinically, the system will have even more 

components which can impact the Raman spectra.  Parts such as filters, grating, and 

even laser light sources vary slightly from piece to piece, and they each have a limited 

shelf life.  This means system components may change throughout the lifespan of a 

product.  As a specific component begins to fail, the Raman spectroscopy may exhibit 

subtle changes over time.  Furthermore, an ideal Raman spectrometer would have 

interchangeable parts so it could be customized for specific applications.   

These needs require a method for normalizing variations in Raman spectra due 

to changing equipment.  Since software methods already exist for background 

subtraction, they may be the best avenue for addressing these needs in the future. 
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9.2 Clinical Testing for FDA Approval and Obtaining  Reimbursement Codes 

Before moving into the truly clinical realm, Raman spectroscopy must go through 

a series of validation steps, including FDA approval.  This includes approval of the 

instrument to be used as well as the diagnostic algorithms and databases used.  As a 

starting point, the FDA safety requirements and procedures must be examined.  Once 

the process is understood, the application process can begin.   

Simultaneously, investigation should begin towards establishing a standardized 

reimbursement code (CPT) for hospitals to use in procedural billing (Association, A. M.).  

The technology may fall under an existing code, or it may require development of a new 

code.  If that is the case, a Category III (experimental) code can be obtained during FDA 

testing (Association, A. M.).  Within five years, it can be changed to a Category I 

(procedural) code once requirements for a Category I code are met (Association, A. M.). 

9.3 Study Expansion to Other Pathologies 

Neuroblastoma represents just one of dozens of diseases which pose significant 

diagnostic problems.  Since Raman spectroscopy displays great promise in diagnosing 

neuroblastoma from similar tumors and great promise in diagnosing specific parameters 

of neuroblastoma aggressiveness, it is logical that it be applied to other diseases and 

disease processes.  It can also be used to track the effects of drug treatment, either 

through tissue testing, or ex-vivo testing on cells.    

When higher incidence tumors are studied, there is also a possible business 

opportunity for developing commercial laboratory and surgical biopsy tools.  A brief 

market analysis of high-incidence tumors is shown in Appendix E. 
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9.4 Biochemical Correlation to Raman Spectroscopic Peaks 

The studies described in this dissertation go as far as to identify peaks which are 

diagnostically significant.  However, there is not yet an attempt made to correlate these 

peaks to their biochemical correlates.  Some of the Raman peaks which were 

diagnostically significant were actually valleys or slopes between peaks.  An in-depth 

study is needed to determine why these Raman features were significant and to 

determine what they represent.  Once the identity of the Raman features is established, 

they can be traced back to the underlying cancer biology, and conclusions can be 

drawn regarding underlying biological processes in the disease progression. 

9.5 Development of a Cell-Line Database 

Raman spectroscopy was highly sensitive and specific at detecting even the most 

subtle genetic changes in the MYCN-3 cell line.  This suggests that Raman 

spectroscopy could easily detect less-subtle changes within cells, and it should easily 

be able to distinguish from cell line to cell line.  Building a database of existing cell lines 

would provide a valuable tool to basic science researchers.  Once a database is 

created, further subtleties can be cataloged, including changes in the Raman signature 

due to genetic alteration, drug treatment, etc. 

An incidental finding in this work was that Raman spectroscopy could detect 

changes in the Raman signal of cells due to changes in their environment.  Changes 

which appeared to be measurable using Raman include cell confluence, CO2 levels in 

incubation, and quality of cell media being used.  While monitoring these changes does 

not relate to cancer diagnostics, it opens up another avenue for Raman spectroscopic 

research.   
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9.6 In-Depth Measurement of MYCN Gene Amplification  

The research performed measuring MYCN amplification was only a preliminary 

study.  Further testing is necessary to confirm these results.  A detailed follow-up study 

is outlined which measures MYCN amplification at several time points and compares it 

to untreated control samples at every time point.  If there are measurable changes due 

to cell confluence, this experiment will also find those changes. 

First, determine a growth curve for the cell line to determine the ideal plating 

densities.  Grow cells to confluence in a T-75 flask.  Trypsinize the flask and split the 

cells equally into 7 groups.  Isolate 1/7 of the cells for immediate Raman testing.  

Replate the remaining six groups into six T-25 flasks.  They should be plated at 

approximately 20% confluence.  Treat three of the flasks with doxycycline to induce 

MYCN amplification.  Harvest the cells and measure the Raman signatures from one 

control and one MYCN-amplified flask at the time points of 6 hours, 24 hours, and 48 

hours.  Figure 9.1 graphically depicts the experimental design.  

 

 

Figure 9.1 : Experimental design.  Control cells were tested at time = 0 hours.  Control 
and MYCN-amplified cells were tested at time = 6 hours, 24 hours, and 48 hours. 
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1 APPENDIX A INTERNAL REVIEW BOARD DOCUMENTATION  

1. COPY OF CURRENT PROTOCOL 

Raman Spectroscopy for Diagnosis of Pediatric Neopl asms 

Objectives:  

This project seeks to evaluate the Raman spectroscopic signals associated with 

normal and malignant variations of different pediatric tissues.  The specific objectives of 

this project are: 

1. Use variations in spectra to differentiate between normal, benign, and malignant 

tissue. 

2. Examine various tumor grades of the same tissue type in order to allow 

development of a new grading scale for tumor differentiation based on molecular 

composition. 

3. Build a database of frozen tissues, which are more easily accessible.  Frozen 

tissues can be correlated to similar fresh tissues.  

4. Develop a Raman spectroscopy database of various tissue types. 

5. Finally, our goal is to use the identified wavelengths for tissue diagnosis and 

condense the laser mechanism to incorporate laser emission and signal 

detection into a fiber optic probe.  This will allow intra-operative use in tumor 

diagnosis and scanning tumor beds for residual malignant cells.* 

Background Information:  

Currently, gross and histopathologic diagnosis is routinely performed for resected 

tissue in cases of neoplastic growth. These diagnoses are often times delayed, 

inaccurate on frozen section and provide limited prognostic value. The state of genetic 
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testing and prognostication are not fully developed and are mainly utilized in academic 

investigation. 

Various alterations occur during the degeneration of normal tissue to neoplastic 

tissue. As a result of this process, the cellular makeup of this tissue can be significantly 

different. For example, changes in protein to lipid ratios, protein and DNA modifications 

and or changes in DNA content have been reported to occur in association with 

neoplastic change.  These tissue changes can be precisely detected by Raman 

spectroscopy. 

The Raman Effect occurs when light incident on a sample is scattered at a new 

wavelength due to donation of energy to the sample’s vibrational bonds.  A photon of a 

new wavelength is emitted, and the change in wavelength is proportional to the change 

in vibrational energy in the sample.  These changes in wavelength can be correlated 

with specific chemical constituents, yielding a “molecular fingerprint” that is unique to 

each sample. 

 In the past decade, Raman spectroscopy has been applied for identification of 

human normal and malignant tissues, including breast (Haka, A. S. et al., 2006b), skin 

(Nijssen, A. et al., 2007), colon (Chowdary, M. V. et al., 2007), esophagus (Shetty, G. et 

al., 2006b), neuroblastoma(Rabah, R. et al., 2008; Wills, H. et al., February 2008), and 

Wilms’ Tumor (Wills, H. et al., (Submitted)) with high sensitivity and specificity.  

Specifically, our group has published reports on breast cancer (in mice) (Kast, R. E. et 

al., 2008; Thakur, J. S. et al., 2007), pancreatic ductal carcinoma (in mice) (Pandya, A. 

et al., 2008), neuroblastoma and related nerve tumors in children (Rabah, R. et al., 

2008; Wills, H. et al., February 2008), and Wilms tumor in children (submitted) (Wills, H. 
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et al., (Submitted)).  We have also examined smaller samples of many pediatric 

cancers, including brain, bone, lymph node, testicular and soft tissue cancers.  To date, 

we believe we are the only group which focuses specifically on pediatric neoplasms. 

Our long-term goal is to develop a fiber-optic probe which can be used to 

evaluate tissue disease status in near-real time.  This will have applications from basic 

science to margin assessment in tumor resection. 

Aims:  

The aims of the study are to evaluate all tissue resections or biopsies obtained 

by various surgical specialists at Children's Hospital of Michigan, and Detroit Receiving 

Hospital. Such methods will reveal spectral correlates of normal and abnormal tissue in 

children compared to pathologic readings to determine validity of this new technique. 

This technique will be utilized on fresh tissue and archived tissue from pathology. 

This data will be used in developing microprobes that will allow in vivo detection 

of tissue in a less invasive and more accurate manner. This will also serve as an 

important diagnostic tool in evaluating the tumor bed after resection. 

Materials and Methods: 

Patient Selection-Inclusion/Exclusion Criteria: 

All patients at Children's Hospital of Michigan and Detroit Receiving Hospital that 

undergo resection or biopsy will be eligible for the study. The study will encompass all 

surgical fields and will attempt to evaluate all tissue regardless of site of origin. Only 

patients who do not have sufficient tissue to evaluate by both histopathology and by 

Raman spectroscopy will be excluded. Pathology will have the priority in evaluating 

tissue for diagnosis. 
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The study will involve a minimum of 600 subjects with the aim of developing a 

Raman database of various tissue types.  Hepatoblastoma, neuroblastoma, Wilms 

tumor, Ewing sarcoma, lymphoma and intracranial neural tumors are some of the 

malignancies that will be evaluated, but we will also evaluate normal tissue from many 

organs. Subjects will be enrolled regardless of gender, race, or ethnicity. All patients 

identified as having tissue submitted for pathologic diagnosis will be enrolled.  Normal 

control samples will be obtained from autopsy cases.  A copy of the autopsy consent 

form is attached. 

There will be no additional risk to the patients as a result of conducting this study. 

All samples will have undergone resection or biopsy as a matter of diagnostic and 

therapeutic intervention. This study will only utilize tissue samples already removed 

from the patient. 

No consents will be obtained, but patient confidentiality will be maintained. The 

study coordinator (RK) will be responsible for maintaining all medical information.  Any 

identifying patient information will be removed from records before being accessed by 

the rest of the group.  Patients will be assigned a unique identifier which is not 

associated with a patient record number.  The link to patient information will be stored 

on a computer in the department of surgery office. 

Apparatus 

A Raman spectroscopy unit consists of an Argon pumped Titanium: Sapphire 

laser, collection optics and spectrometer with a silicon based charge-coupled device 

(CCD). Selected wavelengths (514.5 nm & 785 nm) with detectable reflected intensities 

will be studied. These wavelengths were selected due to their use in previous studies 
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and existing knowledge of Raman effect on biologic tissue at varying wavelengths while 

limiting background fluorescence.  

A Verax InPhotonics portable Raman spectrometer is also available with a 785 

nm, 350 mW class III excitation laser.  There is a short fiber optic coupling probe, and a 

long, skinny attachment.  The probe will be used to interrogate pathology samples and 

will not be used for in-vivo testing. 

Background spectra of samples will be obtained for the glass slide, cover slip, 

Acrytol mounting media, formalin and paraffin.  This background spectral data is 

important in studying tissue because these chemical signatures may be included in the 

spectral findings. Once background information is collected, archived tissue slides of 

hepatoblastoma, neuroblastoma and Wilms tumor along with normal tissue from the 

same patients will be analyzed. 

Raman Measurement  

The Raman technician will cut the tissue into smaller specimens if necessary, 

and measure the Raman spectrum of the tissue using a Raman spectrometer.  Raman 

spectroscopy is performed by mounting the tissue sample on a microscope stage 

(translational stage) with x, y and z coordinates. No sample pre-treatment of any kind 

will be performed on the tissue prior to spectroscopic examination. The laser light is 

focused on the tissue and the Raman spectra will be measured using a 10 second 

exposure time. Two exposures will be obtained to get an average reading for better 

signal-to-noise ratio. At least 12 spectra will be obtained from each tissue for each 

wavelength of light, unless quality spectra cannot be obtained from the sample.  Spectra 

will be collected at random locations for each sample. 
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Following measurement, samples will be placed in a cryovial, labeled with a 

unique pathology code, and stored in a -80°C freezer .  At a later date, tissues will be 

removed from the freezer, placed in saline, thawed for 20-60 minutes, and tested again 

according to the same procedure.  Following testing, the samples will be replaced in the 

cryovial and put back in the freezer. 

 Periodically (depending on the rate of accrual), study pathologists (RR or JP) will 

again remove the frozen samples to cut a frozen H&E section; the remainder of the 

tissue will again be stored in the freezer.  Frozen sections will be examined by light 

microscopy to determine the ‘gold standard’ diagnosis, which will be used to create a 

model of the tissues. 

 Tissues will be stored in the freezer for up to 10 years, in case there is question 

about the diagnosis of the sample.  In the event of a disagreement between histology 

and Raman spectroscopy, a second frozen H&E section will be cut to re-examine the 

tissue with light microscopy.  If a Raman spectrometer is obtained which uses a 

different excitation wavelength, tissues may be re-examined at the new excitation 

wavelength to help construct a database at the new wavelength. 

COG Samples 

 Additional samples will be shipped frozen to Children’s Hospital of Michigan from 

the Children’s Oncology Group.   

Data Management 

 The study coordinator will be in charge of the data management. She will be 

primarily responsible for arranging sample delivery from the operating room, arranging 

testing schedules for researchers, doing the data processing, and downloading the data 
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to a secure server. She will record diagnostic information provided by pathologists and 

store patient records in a locked drawer in the Harper Hospital surgery offices.  Data will 

be stored on a secure online server.  Parameters for each tissue, including the tissue 

code, date collected, and type of disease will be stored on a secure online SQL 

database, with links to the data files on the secure server.  Only the study coordinator 

will have access to patient-identifying information. 

Conflict of Interest and Funding 

 There are no conflicts of interest to report for any of the investigators.  The study 

will be funded by Children’s Hospital of Michigan. 

Statistical Analysis: 

10-20 spectra will be collected from each tissue sample.  Each spectrum will be 

pre-processed by an algorithm to remove cosmic rays, noise and fluorescence 

background from the Raman spectra (Cao, A. et al., 2007).  Spectra will be evaluated 

with all peaks, in order to get the full biochemical understanding of the sample, 

however, spectra will also be compressed using Principal Component Analysis to 

minimize file size for diagnostic testing.  Variations in peak spectra for patient to patient 

variability as well as variability between archived and fresh tissue of similar tumors will 

be analyzed. 

Box plots will be used to remove outliers from the data.  Relevant peaks for 

biochemical analysis can be chosen using four approaches: (1) Subjective observation 

of the spectra by an experienced Raman investigator, (2) A Matlab program will be 

created which will extract the N highest peaks, (3) Relevant literature will be consulted 

which lists the Raman peaks for specific chemicals, (4) Principal component analysis 
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(PCA) will be used to reduce the data into a smaller number of variables. We will retain 

the first N principal components that account for >90% of the variance. 

Discriminant Function Analysis and Neural Networks will be used to build 

diagnostic models of the tissues for classification.  The ‘gold-standard’ diagnosis 

provided by the pathologists will serve as the training mechanism.  Two approaches will 

be used for testing and training, as both have benefits and drawbacks: (1) data sets will 

be randomly split in half, with one half being used for ‘training the  model’ and the other 

half being used for ‘testing the model’.  After classification, the groups will be reversed 

to get a classification picture of the whole dataset.  (2) Leave-one-out analysis will 

create a model of the tissues based on all the spectra except one.  The single spectrum 

will then be tested with the model.  After testing, that spectrum will be replaced in the 

dataset and another spectrum will be removed.  Again, a new model will be created, 

and the spectrum will be tested on that model.  The process repeats until all the spectra 

have been tested in this manner. 

When the data and histological diagnosis permits, we will breakdown the tumors 

according to the grade, treatment, or other parameters and repeat the procedure to 

determine the sensitivity and specificity for different grades of tumors.  Analysis will also 

be done to examine the effects of freezing on Raman spectra.  If frozen spectra  

Significance:  

This work has potential significance in tumor diagnostics. It can serve in a 

minimally invasive fashion and allow optical diagnosis of abnormal tissues. It may also 

lead to developing better prognostication data and serve to yield a molecular analysis of 

gross tissue. These molecular signals may allow for further classification of tumor 
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variants and allow for more precise grading.  It also holds potential for tumor bed 

scanning and obtaining a molecular scan o surface tissue to detect abnormal areas. 

Budget Justification: 

The College of Engineering has been working on issues relating to the 

automotive industry and has started to become more interested in biomedical 

engineering. The School has acquired many expensive fabrications and measurement 

instruments over the years and will fully utilize them in this project. 

The requested items under supplies are specific for this project due to the 

necessary adaptation to the equipment to perform these readings. An example is the 

translation stage and mounting posts kit required for measurements on slides or tissue 

cassettes. Other items such as sapphire substrates are consumable items utilized over 

the course of the project. The other major items are two notch filters required 

specifically for the wavelength utilized for biologic tissues. All of the major equipment is 

already on site and will not be paid for in any manner by this grant. No items are being 

requested for this study, as they are already available on-site. 
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2. 2009 PROGRESS REPORT SUBMITTED TO IRB 

Our hypothesis is that an imaging technique called Raman spectroscopy can 

distinguish between normal and cancerous tissue. The goal of the study is to develop a 

Raman database of various tissue types.  Building a database of ‘normal’ versus 

neoplastic tissues will aid in the development of a surgical tool for near real-time cancer 

detection. 

We collect normal and tumor tissues from resections and biopsies obtained from 

the operating room.  We also collect tissue samples from autopsies.  Most tumors have 

some normal tissue at its surroundings.  When possible, the pathologist takes two 

samples from the tissue: one tumor and one normal. We collect Raman signals from 

both samples. Then the samples are sent to histopathology, or frozen for future testing. 

The Raman signals are statistically analyzed to see if there are any differences between 

normal and cancerous tissue.  We also see if we can predict what kind of sample it is 

from the Raman signal. This prediction is compared to the histopathological findings.   

We recently began collaboration with the Children’s Oncology group, where they 

sent us frozen samples of neuroblastoma (cancer of the adrenal gland or nerves) and 

similar tissues.  This blinded study will support our hypothesis and aid us in collecting 

this rare type of tumor. 

We have collected 350 tissues from 30 different tissue types.  This year, two of 

our papers were published (submitted last year, titled: Raman Spectroscopy Detects 

and Distinguishes Neuroblastoma and Related Tissues in Fresh and (Banked) Frozen 

Specimens, and Diagnosis of Wilms Tumor Using Raman Spectroscopy), and we 

submitted a new paper to the journal of pediatric surgery titled “Differentiation of Small 
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Round Blue Cell Tumors Using Raman Spectroscopy”.  Instead of comparing normal vs. 

cancerous, this paper compared tumors which look the same using traditional pathology 

methods.  Our findings showed that Raman spectroscopy can quickly and accurately 

distinguish these types of tumors which are otherwise hard to tell apart.  We will also 

present this paper at the American Academy of Pediatrics National Conference and 

Exhibition October 17-20, 2009 in Washington DC. 
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3. 2009 IRB CONTINUATION APPROVAL 
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4. 2009 IRB CONTINUATION FORM 
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APPENDIX B RAMAN SPECTROSCOPY DATA PROCESSING 

Preprocessing Data (may apply to cancer data only) 

1. Put all the data files in the same folder. 

2. Put a copy of adaptminmax######.m, combinespectra######.m, and 

meanspectraplot.m into the same folder 

3. Open Matlab 

4. Click […] button next to the ‘current directory’ field and browse to select the folder 

your data is in 

5. Type ‘dir’ into the command window to get a list of all the files in the folder 

6. Highlight the filelist and press ctrl+c to copy the list (See Rachel for the secret trick if 

your filelist is longer than the command window in Matlab) 

7. Open the notepad program and press ctrl+v to paste the list 

8. Go through the list and delete any items which are not file names.  If non-spectral 

files are included, you will get an error when you try to process the data 

9. Save the file as ‘filelist.txt’ 

10. In the Matlab command window, type ‘adaptminmax######’ and press enter to run 

the preprocessing program 

11. You will be asked if you want to see the graphs.  Type ‘1’ for yes and press enter 

12. The processing program will begin preprocessing.  For each file, a new graph will 

open which shows the original data and background subtraction on the top, and the 

processed spectrum on the top.   

13. Relax for 10 minutes or so while the computer processes.  The program is setup to 

pause after it processes 100 files.  Sit back until you get to a pause.   
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14. One-by-one, look at each spectrum to see if it looks decent, and then close each 

window.  Write down a list of all the files which look bad as you do this.  Possible 

reasons for exclusion include: spectrum of glass or stainless steel, cosmic rays 

which were not removed, measurement which was stopped mid-way, etc 

15. Save this list for later.   

16. Once you’ve gone through all the files, you will be back at the Matlab command 

window.  It will say ‘Press any key to continue’.   

17. Press any key to continue (pretty self explanatory, I know) 

18. Repeat steps l-q until all your files are preprocessed 

19. Once a file is preprocessed, the code ‘amm-‘ is appended to the file.  That is how 

you can identify processed data.  You will also notice that map files which had many 

points are now separated into individual processed files. 

Combine all the individual files into one mega-file  

20. Open windows explorer and navigate to the folder where your data is stored 

21. Copy all of your original data into a new subfolder (I suggest naming the folder 

‘Original’ or ‘Original Data’ or something similar, for easy identification if you need it 

later).  You won’t need it anymore for data processing 

22. Remember that list you made with all the bad files?  It’s time to get rid of them so 

they aren’t included in the analysis.  Go through and delete all of those bad boys.  

Make sure you’re deleting the processed files (with ‘amm-') and not the original files 

23. Go back to Matlab and type ‘dir’ into the command window to get a list of all the files 

in the folder 
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24. Highlight the filelist and press ctrl+c to copy the list (See Rachel for the secret trick if 

your filelist is longer than the command window in Matalb) 

25. Open the notepad program and press ctrl+v to paste the list 

26. Go through the list and delete any items which are not file names.  If non-spectral 

files are included, you will get an error when you try to combine the data into one file.  

Make sure that you are looking only at processed files.  You don’t want any original 

files included in the filelist. 

27. Save the file as ‘filelist.txt’ 

28. Go back to Matlab again (we’re almost done in Matlab, I promise!) and type in 

‘combinespectra######’ 

29. You will be asked if you want to create separate files or one big file.  For now, we 

want to make one big file so we can import all the data into SPSS at once.  Type ‘b’ 

and press enter. 

30. The command window will say ‘filelist.txt has ### files’, then it will work for a couple 

minutes to create the file.  It is done when you get a message which says 

‘allspectra.txt being created’. 

Import Data Into SPSS and Setup your data 

31. Open SPSS. 

32. If the intro window pops up, press Cancel. 

33. Select File/Read Text Data 

34. In the browser that pops up, navigate to your data folder, and select ‘allspectra.txt’, 

then press ‘open’ 

35. You will then go through a wizard system to help you import the data.   



www.manaraa.com

153 

 

a. In Step 1, select ‘No’, then press the Next button 

b. In step 2, select ‘yes’ for ‘Are variable names included at the top of your file?’ 

c. In step 3, press the Next button – the defaults are all ok here 

d. In step 4, un-select ‘Space’ as a delimiter and press Next 

e. In step 5, you will get an error that the file names are not an appropriate 

format.   Press ok, then next 

f. In step 6, press finish to complete the import process 

36. If you are trying to append new data to an existing SPSS file, there are many more 

steps.  For now, see Rachel.  Full notes will be written later 

37. SPSS has 2 views you can look at.  You switch between the views by choosing the 

‘Data View’ tab or the ‘Variable View’ tab at the bottom.  The data view tab is just like 

an Excel spreadsheet.  Each row represents a single case, and each column 

represents a variable.  The variable view tab is where you can add variables, change 

their format, etc.  In this view, each row represents a variable, and the different 

columns represent different parameters for those variables.  We need to add in more 

variables such as the filename, diagnosis, etc before we can classify data. Right now 

the only variables in SPSS are the peak intensities at each wavenumber.   

38. To add variables, go to the variable view tab.  Right click on row 1 and select “Insert 

Variable”. 

a. Create a filename variable.  Double click in the name column to change the 

variable name to ‘filename’.  Click on the ‘Type’ for the variable and a […] 

button will appear.  Click on that.  In the ‘Variable Type’ window that pops up, 

select ‘String’.  In the ‘Characters’ tab, delete the 8 and put a more 
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reasonable number – think about how long your filenames would be – I 

recommend a nice large number like 100. 

b. Create a variable for tissue/cell/bacteria/etc type.  Again, right click on row 1 

and select “insert variable”.  Double click in the name column to change the 

variable name to whatever is suitable for your data.    This time, we will leave 

the variable type as ‘numeric’.  Change the ‘decimals’ field for the variable to 

‘0’.  This just makes your data look prettier.  Click on the field in the ‘values’ 

tab, then click the […] button.  This lets you make a key so that your numeric 

variable correlates to a text value.  The text values will appear in the analysis 

output in your results.  The value field will be a number (use consecutive 

numbers) and the label field will be the string value.  For example, 

1 neuroblastoma 

2 ganglioneuroma 

3 normal adrenal gland 

c. Create any other variables that are necessary for your analysis. 

39. Now you have to enter in the information about each of your files!   

40. Open notepad, and open the filelist.txt file.  Use ctrl+a to select the whole filelist, 

then ctrl+c to copy it 

41. Go to the data view tab in SPSS 

42. Highlight the filelist column and press ctrl+v to paste the filelist.  Now you don’t have 

to enter all the filenames manually! 

43. Go through the rest of your columns/variables and fill in the information.  (Hint: copy 

& paste speed this process up a lot) 
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Process Data 

When you open SPSS, there are 2 windows.  The first window is your data 

window (which has the data view tab and your variable view tab).  The second window 

is the output tab.  When you do analysis, the results will be shown in the output window. 

For analysis in SPSS, there are approximately 1.3 gazillion ways you can 

analyze your data.  I will explain how to do 2 essential methods: Principal Component 

Analysis (PCA) and Discriminant Function Analysis (DFA).  PCA compresses the 

variability of your data set from many hundred variables to 5-20 really essential ones.  It 

is up to you whether you want to perform PCA before doing DFA.  If you want to look at 

the significance of your actual peaks, it’s better to just run DFA.  If you want to 

compress your data into a smaller set and then perform analysis, use PCA.  DFA is the 

classification method.  You have 3 methods for training: (1) do the classification based 

on all the data.  This method has no validation and is not recommended.  (2) Perform a 

leave-one-out analysis.  In this method, a single spectrum is removed from the data set.  

DFA is performed on the remaining (n-1) files, and then the classification is applied to 

the single point.  Then, another single spectrum is removed from the dataset and 

classification is performed again.  This process repeats over and over until it has been 

performed for each point.  If you have a reasonably sized data set, the changes to the 

PCA structure are so minimal that you do not need to do leave-one-out analysis on the 

PCA.  (3)Test/Train grouping.  In this method, you split your data in half into a testing 

group and a training group.  You would create a placeholder variable (as described 

earlier) – for instance, ‘1’ could represent training group, and ‘0’ could represent the 

testing group.  You would perform PCA (if desired) and DFA on the training group to 
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build your model, and then test it with the training group.  You could then switch, and 

make the training group the test group and vice versa. 

Selecting Cases for Analysis 

Let’s say that you have three groups in your data set, but only want to compare 

groups 2 & 3.  In that case, we need to temporarily eliminate group 1 from the data set.   

44. Select Data/Select Cases from the menu 

45. In the Select area, choose “if condition is satisfied”, then press the “if” button 

46. In the pop up window, you will put in logic code to choose the cases you want to 

KEEP.  You can automatically move variable names from the left window, or you can 

manually type them in.  The logic buttons are below.  The & means ‘and’.  The | 

means ‘or’.  Make sure to use proper parenthesis if you are using complicated logic. 

47. For example, if you wanted to select groups 2 & 3 as described above, you could 

type either of the following: 

(Group=2) | (Group = 3)    Group = (2 | 3) 

48. For a more complicated example, suppose you want to look at 2 groups, where 

group a is fresh, untreated tumors and group b is frozen, treated, normal tissues.  

You might use the following code: 

((Treatment = 1) & (Temp = 1) & (Tumor = 1)) | ((Treatment = 0) & (Temp = 0) & 

(Tumor = 0)) 

49. When you are satisfied with your selection press the ‘continue’ button, and then 

press the ‘ok’ button. 
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50. You should check your data before proceeding to make sure you selected the 

correct cases.  All of the cases which are temporarily excluded will have a diagonal 

line through their case number on the left hand side of the data window. 

Performing Principal Component Analysis 

51. From the data window or the output window, select Analyze/Dimension 

Reduction/Factor 

52. In the left hand column, select all of the Raman peak variables (you can hold down 

the shift key and use the mouse to quickly scroll through the list).  Press the right-

facing arrow button to move them to the variables column.  These are the variables 

which will be used for analysis.  If you don’t want to use all the variables, only select 

the ones you want. 

53. If you only want to do PCA on a specific group such as a training group, (it will be 

applied to everything else automatically) select the variable for the desired group, 

and use the bottom right-facing arrow to move it to the selection variable field.  Click 

on the value button.  In the pop-up box, enter the value you wish to use for the 

training group. 

54. Press the extraction button.  In the ‘analyze’ area, select ‘covariance matrix’ (instead 

of correlation matrix) then press continue. 

55. Press the ‘scores’ button and select ‘save as variables’.  Then press continue. 

56. Press ‘ok’ to run the analysis 

Reviewing Principal Component Analysis Results 

57. The results will show in the output window. 

58. Principal components with an eigenvalue >1*the mean eigenvalue are saved.   
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59. The ‘Total Variance Explained Table’ shows you how many Principal components 

were saved.  The 2 right hand columns are the important ones.  They show how 

much variance is explained by each principal component individually and 

cumulatively.   

60. The ‘Component Matrix’ table shows the weighting factors of each variable for each 

component.  This would be important if you wanted to determine which chemicals 

are represented in each PC.  For instance, you could do further testing to examine 

how diagnostic each PC is, then determine which chemicals are diagnostic.  You’re 

probably better off just doing this with DFA results though. 

Discriminant Function Analysis 

61. From the data window or the output window, select Analyze/Classify/Discriminant 

62. In the left hand column, select the variable which you are classifying, and use the 

top blue arrow to move it to the ‘grouping variable’ field.  Press the ‘define range’ 

button and enter the minimum and maximum values for your classification variable.  

If you have 2 groups, this might be 1, 2; three groups would be 1, 3, etc 

63. In the left hand column, select all of the Raman peak variables (you can hold down 

the shift key and use the mouse to quickly scroll through the list).  Press the middle 

arrow button to move them to the ‘independents’ column.  These are the variables 

which will be used for analysis.  If you don’t want to use all the variables, only select 

the ones you want. 

64. Press the ‘Classify’ button.  In the ‘display window, select the following 

a. ‘casewise results’: this will show you case-by-case results in a huge table.  If 

you want to examine misclassified cases, you will need this table 
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b. ‘summary table’: this will give you overall classification percentages.  If you 

have 2 groups (cancer/normal), it is like sensitivity and specificity.  If you do 

leave-one-out analysis or test/train analysis, the table will be twice as long, 

with original classification (no special training) on top, and the leave one out 

or test/train analysis on the bottom.  Make sure you are careful which half you 

look at when writing your results. 

65. If you think you might want to access your results later or make a pretty plot, press 

the save button and check the ‘discriminant scores’ box.  Then press continue. 

66. Setup the specific training parameters you wish to use 

a. If you don’t want to do any special training, no extra steps are necessary. 

b. If you are doing train/test analysis , select the associated variable in the left 

hand column, and use the bottom blue area to move that variable to the 

‘Selection Variable’ field. 

c. If you are doing leave-one-out analysis , press the ‘classify’ button.  In the 

‘display’ area, check ‘leave one out classification’ then press continue.  Click 

on the value button.  In the pop-up box, enter the value you wish to use for 

the training group. 

67. Press ‘ok’ to run the analysis 

Reviewing Discriminant Function Analysis Results 

68. The results will show in the output window. 

69. The number of discriminant functions/standardized canonical discriminant functions 

will be 1 less than the number of classification groups.  (if you have normal/cancer 
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there will be 2-1=1 group, if you have normal/benign/cancer, there will be 3-1=2 

groups).   

70. The ‘standardized canonical discriminant functions’ and ‘structure matrix’ tables can 

show which Raman peaks are significant for each discriminant function.  Use these if 

you want to determine which peaks have diagnostic capability. 

71. The casewise statistics table shows you all of your misclassifications.  Cases 

marked with * were misclassified.  The actual group column shows how you entered 

the classification in SPSS (this would be the gold standard).  The predicted group 

column shows the group that the data is placed into based on DFA (not the gold 

standard).  If you look at the case number, you can go to that row in the data table to 

see which file is misclassified. 

72. The classification results table shows how many cases were diagnosed to each 

group with actual number of cases classified and percentage classified.  Special 

training methods (test/train or leave-one-out) are shown below the overall results 

(even if you don’t want overall results, SPSS gives them to you anyway).  Make sure 

you are careful which half you look at when writing your results. 

73. Lots of other really cool statistics can be done with DFA, but we’ll leave it at that for 

now.  If you want to learn more, take PSY8150. 

74. To create a plot of the DFA results, select Graphs/Legacy Dialouges/Scatter/Dot.  

Select the simple scatter or the 3-D scatter option.  Scroll down to the bottom of your 

left hand list until you see the saved discriminant function scores (I hope you 

remembered to save them when you ran the analysis).  Choose the variables you 

want, and move them to the x, y, and z (if applicable) –axis fields.  At the top of the 
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left hand field list, select the classification variable, and move it to the ‘Set markers 

by’ field.  This will make it so each case is labeled by its ‘gold standard’ diagnosis 

and you can easily see how well you classification separated the data.  You can also 

do this with PCA values.  I’ll let you try to figure this out if you want. 

a. Note – remember the number of discriminant functions created is 1 less than 

the number of classification groups.  Therefore, if you only have 2 

classification groups, you’ll only have 1 discriminant function.  Therefore, you 

can only make a 1-D scatter plot. 

Excluding/changing data points 

75. Once misclassified cases are identified, go back to the raw data to look for reasons 

why.  Review the raw data text file to see if there is anything unusual.  If it seems ok, 

go back to your original sample (if possible).   Review the slide or other available 

information to look for explanations for the misclassification. 

76. If you find that you have to delete a case or change its diagnosis, you must update 

the SPSS data table, then re-do your analysis, starting with PCA if applicable. 

Creating mean spectra figure files (In Matlab) 

77. If you didn’t already do step 1, make sure all the data files are in the same folder, 

with a copy of MeanSpectraPlot.m. 

78. Open Matlab 

79. Click […] button next to the ‘current directory’ field and browse to select the folder 

your data is in 

80. Open SPSS or excel to get a list of your files and their classifications. 
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81. Copy the list of filenames for the group whose mean spectrum you would like to 

calculate 

82. Paste the list into WordPad or similar program and save the file as graphfilelist.txt 

83. In the Matlab command window, type meanspectraplot then press the enter key to 

run the program. 

84. At the prompt, type 2 (All the files) and press enter 

85. The program will work for awhile and you’ll be prompted to select the type of plot you 

want to see.  To see the mean spectrum plot, select 5. 

86. Repeat the same steps (75-80) for each group you’d like to calculate a mean 

spectrum plot for. 

87. To edit a plot, click on the arrow button of the toolbar icon menu in the plot window.  

Then, if you double click on plot characteristics, a pop-up edit window will appear, or 

you can edit the text as well.  If you don’t like this way, you can programmatically 

change plot options as well, but we won’t get into that here. 

88. This program, as you can see, has lots of other options that you can utilize.  If you 

want to calculate a difference spectrum (between 2 groups only) or plot multiple 

mean spectra on the same plot (no limit on how many groups allowed), your text file 

must also include group assignments.  To make the group assignments, you need to 

copy 2 columns into the graphfilelist.txt file.  The left column should be the filename 

and the right column should be the group number.  It’s easier to arrange your 

columns this way in Excel or SPSS, then copy to WordPad. 
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APPENDIX C CELL CULTURING SOP 

Materials 

• Trypsin (see specific cell line notes for exact type) 

• Medium (see specific cell line notes for exact type) 

• Dulbecco’s Phosphate Buffered Saline (PBS)  

• Flasks 

• Pipetter and pipettes (1cc, 2cc, 5cc, 10cc, 25cc) 

• Alcohol and kimwipes/clean room paper  

• Bleach in a beaker 

• Centrifuge tubes (when splitting adherent cells or testing cells with Raman) 

• UV-quartz slide (when testing with Raman) 

 
General Cell Culture Notes 

• Media is added to flask containing trypsin because the media neutralizes the trypsin 

• Generally cells are split every other day 

o Fast growers are generally split � 1:3 (1 initial flask + 2 new flask) 

o Slow growers are generally split � 1:2 (1 initial flask + 1 new flask) 

o It’s important to passage to prevent overgrowth, nutrient depletion, & 

contamination. 

• Generally with trypsin one wants to use as little as possible & allow to sit on cells for 

as little time as possible.  The time varies by cell line.  See cell line specific notes for 

more information. 

• Avoid touching the neck of the flask and the back (cell side) of the flask with the 

pipetter.  This will avoid contamination and prevent you from damaging the cells 
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• When pipetting, pay close attention to both the flask and the pipetter.  Make sure not 

to suck liquids to the level of the cotton in the flask.  This keeps the pipetter from 

being contaminated. 

• Media and trypsin can become bad if they are old or are over-heated/heated too 

long in the incubator 

• Once a pipette has been in the flask or other contaminated either, it should not go in 

the sterile fluid containers (media, PBS, trypsin, etc) 

• Wear gloves, and avoid touching any exposed skin while wearing gloves 

• Wash hands after working with cells 

• Complete medium should not be left in the fridge >3 weeks.   

Mixing Cell Media 

Start with a 500 mL bottle of cell medium.  Then add: 

• 50 mL fetal bovine/calf serum 

• 5 mL L glutamine 

• 5 mL antibiotic (we used a mix of 2 antibiotics and 1 antifungal) 

Place the lid back on the medium and shake by hand to mix.  Label the container 

with initials, date, and what you added.  With the above additions to the media the 

media is referred to as complete media. 

Defrosting Cells 

1. Move cells from the -150C freezer to the -80 freezer (all our cells are currently in the 

-80C freezer) 

2. Prep the hood area by spraying with 75% alcohol 
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3. Start with a new flask (spray flask or flask bag with alcohol before bringing under 

hood) 

4. Label the flask with your initials, the date, the cell line, and any other pertinent 

information 

5. Add 11 mL of complete medium to the flask 

6. Prepare the area for transferring the cells. 

a. Leave the flask lid loose 

b. Place a 2mL pipette on the pipetter (leave the paper wrapping on) 

7. Move the cells from the -80 freezer to the 37 bath. 

8. Wait about 90 seconds or until there is a small, pea-sized ice still remaining.  For 

most cell lines, you want to spin the flask between your fingers while defrosting, 

without letting the neck of the flask touch the water.  See specific cell-line notes for 

more instructions. 

9. Spray the cell vial and your hands with 75% alcohol and wipe down with a 

Kimwipe/clean room paper. 

10. Open the cell cryovial (place the lid face-up in the hood if necessary) 

11. Use the 1cc pipette to suck out the cells from the flask 

12. Empty the pipette into the flask (put the pipette tip all the way into the medium fluid 

and then empty) 

13. Mix a couple of times to rinse out the pipette 

14. Suck out about 0.5 mL of the cell/medium mixture 

15. Use this to rinse out the cryovial a couple of times 

16. Suck the 0.5 mL out of the vial and replace it in the flask. 
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17. Mix a couple more times. 

18. Replace the lid on the flask (tightly) 

19. Discard the pipette  

20. Place the flask under the microscope and double-check your cells 

21. Place the flask in the 37C incubator 

22. Put some bleach in the vial to kill the cells (since we are working with human cells).  

Allow the bleach mixture to sit for at least 5 minutes, then you can pour the bleach 

mixture down the drain (dilute with running water) 

23. Clean the working area by spraying with 75% alcohol 

Cell Passage (Splitting): Adherent Cells 

1. Remove complete media and trypsin from refrigerator & warm (RT – 37 °C, takes 20 

– 30 minutes) 

While complete media & trypsin are warming, steps 2-5 may be performed 

2. Prep the hood area by spraying with 75% alcohol and wiping down.  Put the other 

necessary supplies under the hood too (pipetter, pipettes, PBS, bleach, etc) and put 

the biohazard bag close to your work area 

3. Start with a new flask (spray flask or flask bag with alcohol before bringing under 

hood) 

4. Label T-75 flask w/cell line (i.e. 2774), date, initials, and split ratio (i.e. 1:3).  Label 

both the front and the bottom of the flask. 

5. While media warming, check cell growth under the microscope to determine its 

confluence. 

a. Generally, cells should be split ~ 70% confluence. 



www.manaraa.com

167 

 

b. If media is not ready, place cells back into the incubator 

When complete media & trypsin are warmed, continue below 

6. Use a 10 cc pipette to suck out the media, and discard in the bleach container 

7. Add 5 – 8 ml Dulbecco’s PBS to flask. (Add to front wall, side of flask w/o attached 

cells.)  

8. Re-cap & then rock/roll flask side-to-side w/fluid touching attached cells. (Don’t let 

fluid enter cap.) 

9. Remove PBS and discard in bleach container 

10. Some cell lines need to be rinsed with PBS 2-3 times (generally cancer cells).  See 

cell-line specific notes. 

11. Add ~3 ml trypsin to the attached cells and then rock side-to-side.  Generally, cancer 

cells need to be placed in the 37C incubator for ~5min for the trypsin to act, whereas 

normal cells can sit under the hood 2-3 min.  See cell-line specific notes.   

12. You can look at the back wall of the flask or look under the microscope to verify that 

the cells are detaching.  

13. Add 7 ml of media to back wall of flask to deactivate the trypsin & continue to wash 

back of wall (power wash) until cells come off. 

14. Break up cell clumps.  You can suck up all the media into the pipette, place it against 

the bottom of flask and push out the cells, or you can release the cells against the 

corner of the flask to break clumps.  Check with microscope if desired. 

15. When splitting cells in the T-75 flask, 12 ml of fluid need to be in each flask.  There 

should be 10cc of liquid in the flask currently (3 trypsin, 7 media).  Determine the 
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amount of fluid you need to add to get to the right concentration (add 14 cc media to 

make 2 flasks/24 cc, 26 cc media to make 3 flasks/36 cc, etc). 

16. Add the proper amount of media you just figured out and mix.  (Go up and down with 

the pipette several times) 

17. Place 12 ccs of media/cells in each flask and cap your flasks.  Check with 

microscope if desired. 

18. Place flasks in incubator 

19. Clean hood and everything left in hood with the 75% alcohol.  After cells have been 

in bleach for at least 5 min, they can be poured down the sink (dilute with running 

water) 

Freezing Cells 

Cells Should be split ~1 day prior to freezing.  They should be at approximately 

80-90% confluence when splitting. 

1. Warm up media and trypsin 

2. Sterilize hood with 70% EtOH 

3. Prepare all necessary materials, wipe everything with 70% ethanol 

4. Check cells for confluence & contamination 

5. Remove media from flask 

6. Rinse with 5-7 cc PBS (add to front wall) 

7. Remove PBS 

8. Add 3 mL trypsin (see cell notes for which type) to back wall, cover bottom, incubate 

as described in cell-specific notes 
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9. Add 7cc fresh media to resuspend.  Power wash back wall to detach all cells, break 

up any clumps 

10. Put media/trypsin/cell into centrifuge tube and spin at 700 RPM for 5 min 

11. Bleach flask while waiting 

12. Warm up freezing media and prepare cryovials with labels 

13. Use 1mL or 2mL pipette to remove media from centrifuge tube.  Near the bottom, tilt 

the tube to remove fluid rather than putting the pipette near the cell pellet. 

14. Resuspend in PBS to wash away any remaining medium.  Break up any clumps. 

15. Centrifuge at 1200 RPM for 5 min 

16. Remove PBS from centrifuge tube (remember to tilt the tube) 

17. Add 1 mL of freezing media for each flask you wish to make. 

18. Put 1 mL of media in each cryovial.  Do not put bubbles in.  It is ok to have slightly 

less than 1 mL. 

19. Place in Mr. Frosty in -80. 

20. Remove from Mr. Frosty the next day and place in -150 freezer if available 

Testing Cells with Raman Spectroscopy 

In the clean room: 

1. Remove cells from flask (trypsinize if necessary) and place in centrifuge tube 

2. Spin down at 700 RPM for 5 min 

3. Remove media with 1mL or 2mL pipette and discard in bleach container.  Tilt 

tube when you get to the bottom rather than putting pipette near the cell pellet. 

4. Resuspend cells in PBS and re-spin at 700 RPM for 5 min (this will make sure 

the cells are thoroughly rinsed) 



www.manaraa.com

170 

 

5. Remove media with 1mL or 2mL pipette and discard in bleach container.  Tilt 

tube when you get to the bottom rather than putting pipette near the cell pellet. 

6. Resuspend in 1-2 mL of PBS and place cells in a cryovial 

In 3322: 

1. Turn on the live-cell chamber and place the cryovial in the chamber so it stays 

warm. 

2. Turn on and calibrate the Raman if it isn’t already ready 

3. Put the Nikon 60x dipping objective on the microscope 

4. When the Raman is ready, move the cells under the hood, and place 150 uL on 

the end of a clean UV-quartz slide. 

5. Carefully bring the slide over to the Raman.  Put the remaining cells back in the 

live cell chamber. 

6. Place the slide on the stage, with the cell end hanging over the edge. 

7. Raise the stage until the objective contacts the liquid 

8. Adjust the stage to focus on a cell 

9. *Carefully close the door to the Raman and switch the laser on. 

10. Ensure the laser is properly focused and begin the measurement 

11. The parameters we use are: 

a. 10 accumulations 

b. 10 seconds each 

c. 50% power 

d. Check cosmic ray removal 

e. Check ‘close shutter after measurement’ 
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f. 600-1800 cm-1 

The filename should include this information, as well as the cell type (note if 

suspended in PBS), the date, and which measurements came from each cell (A1, A2, 

B1, B2, etc) 

  



www.manaraa.com

172 

 

APPENDIX D PCR PROCEDURES AND RESULTS 

RNA Isolation 

Total RNA was isolated using the RNeasy Protect Mini Kit (Qiagen), adding the 

optional step to perform DNase I digestion.  Briefly, cells were stored at 4°C in PBS until 

RNA isolation.  Cells were lysed using Buffer RLT, then homogenized using a 

QIAshredder spin column.  The RNA was bound to the RNA column, treated with 

DNaseI to remove genomic DNA, washed, eluted with RNAase-free water, and stored 

at -80°C.   

cDNA Generation 

Prior to cDNA generation, the concentration of total RNA in each sample was 

measured using the NanoDrop spectrometer (Thermo Fisher Scientific, Wilmington, 

DE).  1 µL of sample was pipetted onto the measurement surface, and the arm was 

closed, creating a bubble between the arm and measurement surface.  The height of 

the bubble was automatically adjusted for the wavelength of light, and the quantity of 

RNA in the sample was determined.  The NanoDrop was cleaned with lens paper 

between each sample measurement. 

NanoDrop also provided information about the quality of RNA, and whether it had 

protein contamination.  Protein is generally more absorbent at 280 nm whereas nucleic 

acids have higher absorbance at 260 nm.  In general, a 260/280 absorbance ratio of 2.0 

represents a pure RNA sample.  Lower values mean the sample may be contaminated 

by protein or other chemicals ("NanoDrop Technical Support Bulletin T009," 2007).  

Table D.1 shows the RNA concentrations and 260/280 ratio for each sample. 
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Sample Number RNA concentration (ng/uL) 260/280 ratio 
MYCN3-B-120809 236.28 2.13 
MYCN3-L-120909 585.29 2.12 
MYCN3-K-120909 297.78 2.07 
MCYN3-M-121009 34.40 2.6 
MYCN3-Q-121109 1641.42 2.08 
MYCN3-P-121109 1388.21 2.11 
Table D.1 : Relative concentration of RNA and 260/280 ratio for each sample. 

 

As Table D.1 shows, sample M had an exceptionally low concentration of RNA.  

It was removed from the study. 

cDNA was created following RNA quantification.  Ready-To-Go You-Prime First-

Strand Beads (GE Healthcare) with random hexamers (Integrated DNA Technologies, 

Coralville, IA) were used to create the cDNA.  RNA was added to the You-Prime First-

Strand Bead tubes at a concentration of 2 µg/ 30 µL.  The initial concentration of RNA 

detected using the NanoDrop was converted to µg/µL, and then entered into the formula  

volume sample RNA = (2 µg * 1 µL) / concentration 

to determine the volume of sample necessary to reach 2 µg.  Then, the volume of water 

necessary to reach the 30 µL volume was calculated using the formula 

volume water = 30 µL – volume sample RNA. 

Table D.2 shows the volumes of sample RNA and water used for each sample. 

 

Sample ID Initial RNA (ng/ 
µL) Concentration 

Convert to 
µg/µL 

µL RNA to get 
2 µg RNA 

µL water to 
reach 30 µL 

MYCN3-B-120809 236.28 0.2363 8.4638 21.5362 
MYCN3-L-120909 213.43 0.5853 3.4171 26.5829 
MYCN3-K-120909 297.78 0.2978 6.7159 23.2841 
MCYN3-M-121009 34.40 Excluded Excluded Excluded 
MYCN3-Q-121109 1641.42 1.6414 1.2185 28.7815 
MYCN3-P-121109 1388.21 1.3882 1.4407 28.5593 
Table D.2: Calculations for each sample to determine the concentration of RNA and 
water needed to initiate cDNA generation 
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Next, 2 µg of random hexamer diluted in 3 µL RNA-free water was added to each 

tube.  We started with 10 nm (nanomoles) of dry random hexamer at a molar 

concentration of 5581.3 pm (picomoles) / 10 µg and calculated that our total weight of 

hexamer of 18.18 µg.  We diluted the dry random hexamer in 90.9 µL of RNA-free water 

to get a final concentration of 0.2 µg/ µL water ((18.18 µg*1 µL)/0.2 µg).  Using this 

dilution, we can be sure that each 1 µL of water contains exactly 0.2 µg of random 

hexamers.  A large quantity of random hexamer equal to the volume necessary for 13 

samples was mixed using 13 µL of random hexamer and 26 µL of RNA-free water.  

Then, 3 µL volumes were pipetted from this mixture to each sample tube.  One extra 

sample was made in case of pipette errors.   

Once the sample tubes were all prepared, they were gently vortexed and briefly 

centrifuged to mix the sample and move it to the bottom of the tube.  Tubes were 

incubated at 37°C for 60 minutes while the cDNA reacti on occurred.  After the reaction, 

cDNA samples were stored at -20C until PCR measurement. 

PCR 

PCR was performed using a MYCN TaqMan gene expression assay with a FAM 

marker (Applied Biosystems) to quantitate the level of MYCN in our cells.  We also used 

a probe to measure the GAPDH housekeeping gene marked with a JOE tag as a 

control (Applied Biosystems).  Housekeeping genes are found at the same expression 

level in all cells; therefore, they should provide a constant expression value in all 

samples. 

The MYCN probe was supplied at an 18µM concentration for primers and 5µM 

concentration for the probes, totaling a 20X concentration.  The GAPDH probe was 
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supplied with a 10µM forward primer, a 10 µM reverse primer, and a 5 µM probe.  

TaqMan ® Universal PCR Master Mix at a 2x concentration (Invitrogen) was used for 

the reaction. 

The MYCN gene expression assay was specially designed to simplify the PCR 

chemistry.  Each 20 µL reaction was composed of 10 µL of master mix, 1 µL of primer 

(at 20x concentration), and 9 µL of water containing the cDNA.   

The GAPDH gene expression assay was designed such that each 20 µL reaction 

was composed of 10 µL of master mix, 2 µL of forward primer, 2 µL of reverse primer, 2 

µL of the probe, and 4 µL of water containing the cDNA. 

Each sample was tested in duplicate for each gene (MYCN and GAPDH) at two 

different concentrations (100 ng/reaction and 10 ng/reaction).  A negative control (NTC) 

containing no DNA was also tested for each gene of interest in duplicate.  Tests were 

performed in duplicate to ensure there was no sample contamination.  Singleplex PCR 

was used because it requires less setup and calibration than multiplex PCR. 

In order to minimize the number of pipetting steps, the following procedure was 

followed: 

• Determine the number of reactions necessary (5 samples * 2 genes * 2 replications * 

2 concentrations) + (1 NTC * 2 genes * 2 replications) = 44 reactions; for each gene, 

this are 22 reactions.  

• Allow for a 10% pipette error, and adjust the number of reactions mixed accordingly.  

For each gene, allow for 22 reactions + 2 pipette error reactions = 24 total reactions. 

• Determine which combination of reaction components for each gene can be 

combined to pipette in one step 
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o All ingredients are the same for each gene tested except the cDNA plus water 

ingredients – the cDNA material must be pipette individually for each sample 

o The smallest amount of water needed in a reaction is 4 µL using the GAPDH 

probe.  

� The GAPDH reaction mix should contain 10 µL of master mix, 2 µL of 

forward primer, 2 µL of reverse primer, and 2 µL of probe for each 

reaction 

� The MYCN reaction mix should contain 10 µL of master mix, 1 µL of 

primer, and (9 µL – 4 µL) 5  µL of water for each reaction 

• Combine the ingredients determined in the previous step, making enough material 

for all reactions for each gene 

o For GAPDH, combine in a single tube 

� 10 µL * 24 reactions = 240 µL of master mix 

� 2 µL * 24 reactions = 48 µL of forward primer 

� 2 µL * 24 reactions = 48 µL of reverse primer 

� 2 µL * 24 reactions = 48 µL of GAPDH probe 

o For MYCN, combine in a single tube 

� 10 µL * 24 reactions = 240 µL of master mix 

� 1 µL * 24 reactions = 24 µL of primer 

� 5 µL * 24 reactions = 120 µL of water 

• Pipette 16 µL of the GAPDH mixture into each well designated for GAPDH testing.  

The same pipette tip can be used for the entire process, as long as it does not get 

contaminated.   
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• Pipette 16 µL of the MYCN mixture into each well designated for MYCN testing.  The 

same pipette tip can be used for the entire process, as long as it does not get 

contaminated. 

• Determine the volume of water and cDNA necessary to reach concentrations of 

100ng cDNA / 4 µL water. 

o cDNA was created at a concentration of 2 µg / 33 µL.  This is equivalent to 

60.6 ng / µL. 

o Prepare enough material to have 1 extra reaction.  Therefore, there should be 

at least 5 reactions made for each sample (2 reactions for MYCN, 2 reactions 

for GAPDH, and 1 extra for each sample) 

o The volume of cDNA necessary for 500 ng is 500 ng / (60.6 ng / µL) = 8.25 µL 

o The volume of water required to reach the final volume of 20 µL is 20 µL – 

8.25 µL = 11.75 µL. 

• Determine the volume of water and cDNA necessary to reach concentrations of 

10ng cDNA / 4 µL water. 

o The smallest reliable pipette volume is 1 µL, or 60.6 ng.  Therefore, make 

enough material for 6 reactions.  (60 ng / 6 reactions = 10 ng / reaction) 

o The remaining volume of water necessary to reach the volume of 24 µL (6 

reactions * 4 µL) is 24 µL – 1 µL = 23 µL. 

• Create a 100 ng / reaction mixture and a 10 ng / reaction mixture for every sample 

using the volumes listed above. 

• For each sample, pipette 4 µL of the appropriate mix into the appropriate well.  To 

avoid contamination, use a new pipette tip for each well. 



www.manaraa.com

178 

 

• Add 4 µL of water to the NTC wells of the plate.  Since these are control wells, there 

should be no genetic material in the well.  

 

The end result is a well plate where every test well is filled to the same volume of 

20 µL.  The layout of the 96-well plate is shown below in Figure D.1. 
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Figure D.1 : Layout of 96-well plate for PCR 
 

 Once the well plate was set up, it was sealed with parafilm, making sure 

each well was individually sealed.  The tray was vortexed to ensure there were no air 

bubbles, and to ensure that the whole sample volume was at the bottom of the well 

plate.  Next, the plate was centrifuged for 2 minutes at 400 rpm. 

Real-time PCR was performed using a 7900HT Real-Time PCR system (Applied 

Biosystems).  The well plate was placed in the robot, and the software was setup to 

identify the detector (gene target: MYCN or GAPDH) and reporter (dye: JOE or FAM) in 

each well plate.  Wells with no sample included were also identified.  Finally, the 

standard thermal cycle protocol was selected and PCR was initiated. 
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PCR Results 

Figure D.2 shows the amplification curves for samples B, K, and L at 100 ng 

cDNA concentration.  Note that within each sample, the lines run very close to each 

other and in parallel.  This signals consistent results within each sample. 

Table D.3 shows the output quantitative PCR results for the experiment.  The 

MYCN Ct value of each sample was correlated to the GAPDH Ct value of the same 

sample.  This ensured that even if the concentration of sample within the well is off, the 

data analysis results will still be conclusive.  In the table below, results are shown 

relative to the PCR concentration of 100ng of sample K.   

 

#   Sample Avg Ct 
Avg 
∆Ct 

∆Ct 
SE 

Delta 
Delta 
Ct SD RQ RQ Min RQ Max 

1 100ng B 22.522 5.141 0.236 -1.554 2.937 0.579 14.901 
2 100ng K 22.836 6.695 0.185 0 1 0.281 3.562 
3 100ng L 20.891 3.126 0.167 -3.569 11.868 3.773 37.333 
4 100ng P 23.891 5.214 0.937 -1.481 2.791 0.004 1757.162 
5 100ng Q 25.396 5.868 -0.827 1.774 
6 10ng B 25.692 2.905 1.446 -3.79 13.828 0.001 288934.5 
7 10ng K 27.376 6.168 3.693 -0.527 1.441 0 1.55E+11 
8 10ng L 24.087 -0.909 2.781 -7.604 194.524 0 3.96E+10 
9 10ng P 24.774 -0.472 1.62 -7.167 143.667 0.002 9922547 

10 10ng Q 29.264 5.019 3.659 -1.676 3.196 0 2.73E+11 

11 
NTC 
MYCN 

Table D.3 : Relative quantification PCR results, calibrated to 100ng sample K and the 
GAPDH housekeeping gene. 
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Figure D.2 : PCR amplification curves for sample B (top), K (middle), and L (bottom). 
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 The RQ min and RQ max columns show the top and bottom values of the 

expected error bars for each sample.  Note that the error bars for the 10ng sample 

range from 0 to ~270 billion times amplification.  These results were excluded from the 

remainder of the experiment.  The 100 ng concentration P and Q samples of trial 

number 2 were also excluded for similar reasons.  This is not totally unexpected.  Since 

the ideal concentrations of cDNA for running PCR were unknown, multiple 

concentrations were tested. 

Also, note that the NTC row of Table X contains no data.  This is expected, since 

that sample was used purely as a control, with no cDNA placed in the well.  If that row 

had data, it would signal a flaw in the experimental setup. 

Finally, examine the 100 ng B, K, and L rows of Table D.3, which are highlighted 

in blue.  The Ct value is the number of times the material was doubled before it reached 

a threshold value.  Therefore each increase in Ct represents a doubling.  The delta delta 

Ct value represents the difference in cycles to get to the threshold when normalized to 

the GAPDH control and the 100ng K MYCN sample.  The RQ value is 2^(delta delta Ct) 

and it represents how much more MYCN cDNA was in samples B and L.  RQ min and 

RQ max represent the error bars for the RQ calculation.  Figure D.3 graphically depicts 

the RQ values. 
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Figure D.3: Relative quantitative PCR results with sample K as the control 

 

As shown, sample L, which was treated with tetracycline has 11.9 times more 

MYCN cDNA than the control sample K counterpart.  This is a significant change 

because the error bars do not overlap.  Sample B had approximately 2.9 times more 

MYCN cDNA than sample K; however, this difference was not significant, as exhibited 

by the overlapping error bars.  These results suggest that treatment by tetracycline did 

increase the level of MYCN cDNA within the experimental cells. 
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APPENDIX E MARKET ANALYSIS FOR RAMAN BIOPSY TOOL 

U.S. Cancer Incidence 

It was estimated that there would be 1,399,790 new cases of cancer diagnosed 

in 2006 in the United States, including the following high-incidence cancers ("Cancer 

Facts & Figures 2006," 2006): 

• Prostate Cancer (234,460) 
• Breast Cancer (214,640) 
• Lung Cancer (174,470) 
• Colon Cancer (106,680) 
• Melanoma (62,190) 
• Bladder Cancer (61,420) 

These numbers exclude new cases of basal and squamous cell carcinomas, as 

well as in situ carcinomas.  Within Michigan, it was predicted there would be 48,250 

new cancer cases diagnosed in 2006.  As the average age of the American population 

continues to rise, it is expected that cancer incidence will rise accordingly.  The 

incidence of invasive cancer developing at any site between birth and 39 years of age is 

1 in 70 for men and 1 in 50 for women.  By age 69, the odds of developing cancer 

increase to 1 in 6 for men and 1 in 9 for women ("Cancer Facts & Figures 2006," 2006). 

Market Plan: Surgical Instrument 

Preliminary data suggests a surgical spectrometer could be priced as low as 

$10,000; however, the market may support a price much higher than this if the device is 

truly useful to the surgical user.  For example, the newest daVinci robot sells for 

approximately $1.5 million. 

We propose selling our equipment for a fixed price, and then charging a per-use 

diagnostic fee for each biopsy performed.  Initially, we will focus on the three highest-
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incidence cancers in the United States (prostate, breast, and colon cancer), which 

account for over one third of total U.S. cancer cases annually, as shown in Table E.1.  

Lung cancer was excluded from preliminary marketing because it may require slightly 

different instrumentation (i.e. Raman measurement through and endoscope instead of 

through a probe). 

 

 Annual US incidence Annual MI incidence 
Prostate Cancer 234,460 7,370 
Breast Cancer 214,640 7,070 
Colon Cancer 106,680 4,930* 
TOTAL 555,780 19,370 
*includes colon and rectal cancer 
Table E.1 : Annual incidence of the most common types of cancer 

 

In the first year, we expect to sell 5 units to our collaborating hospitals.  One 

hospital, Karmanos Cancer Institute sees 6,000 new patients per year.  We assume that 

each of the other hospitals will see approximately the same amount of patients annually.  

Since prostate, breast, and colon cancer make up approximately 1/3 of cancer cases, 

we can assume approximately one third of cancer patients at each hospital will be seen 

with these conditions.  Of the 2,000 patients per hospital, we will assume that one third 

undergo surgery using our diagnostic Raman probe for margin mapping.  This allows for 

some patients who do not receive surgery, and it also accounts for surgical time of the 

instrument.  With (52 weeks * 4 working days) 208 working days annually for elective 

surgeries, 667 cases per hospital equates to approximately three uses per day.  This is 

in agreement with the average scheduling time necessary for a tumor resection surgery. 

6000 cases * (1/3 of cases are prostate/breast/colon) * (1/3 of those cases) * 5 hospitals 

= 3,333 uses   (See Table E.2) 
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Item Cost Number Revenue 
Laboratory systems $10,000 5 $50,000 
General biopsy diagnosis $10 3335 $33,350 
Total   $83,350 
Table E.2 : Projected Year 1 revenue 

Since no technology currently exists like this product, it is impossible to predict 

the product life cycle, or how quickly other users will adopt our technology.  The 

following model is based on our best guess. 

Following the first year, we expect our collaborating hospitals to adopt more 

systems in order to fully address their case load.  We expect both surgeon and patient 

word of mouth in addition to our marketing to increase interest among outside 

institutions.  In 2005, there were 4,936 community hospitals, including 2,927 urban 

hospitals and 2,009 rural hospitals (Association, B. C. a. B. S., 2008), however, we 

expect that the early adopters of the Raman probe technology will be the same users 

who are early adopters of similar high tech devices, such as the daVinci robot.  Of the 

daVinci systems, 358 systems are placed in 290 Tier 1 hospitals (>325 beds), and  64 

are located in Tier 2 hospitals (200-325 beds) ("U.S. Image Guided and Robot 

Assisted Surgery Markets N14C-54," 2008).  Sixty one hospitals have two or more 

daVinci systems. 

In year two, we predict that two thirds of the sixty one hospitals using multiple 

daVinci systems would be early adopters of our technology.  We also predict that four of 

our original collaborating hospitals will invest in a second device, in order to increase 

the case load of Raman-diagnosed tumor resection surgeries.  We predict that each 
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device will be used in approximately 667 cases annually, or about 3 cases per working 

day. 

In year three, we predict selling 50 units, and we predict selling 75 units annually 

in years four and 5.  By year 5, we expect to be involved in approximately 166,000 

cases of breast, colon, and prostate cancer annually (Table E.3), or about 30% of 

cases.  This still allows room for future growth.  Expansion into other types of cancer or 

diagnosis of other diseases allows for further growth. 

 

 Year 1 Year 2 Year 3 Year 4 Year 5 
Units Sold 5 45 50 75 75 
Total Units in the Market 5 50 100 175 250 
Procedures Performed  
667 cases / unit / year 

3,335 33,350 66,700 116,725 166,750 

      
Unit Revenue $50,000 $440,000 $500,000 $750,000 $750,000 
Diagnostic Revenue $33,350 $333,500 $667,000 $1,167,250 $1,667,500 
Total Annual Revenue $83,350  $773,500  $1,167,000  $1,917,250  $2,417,500  

Cumulative Revenue $83,350  $856,850  $2,023,850  $3,941,100  $6,358,600  

Table E.3 : Predicted five year revenue of surgical instrument 

 

9.6.1 Surgical Biopsies 

Non-cancer diagnosis must also be included in market analysis.  While most 

breast biopsies are performed through a needle, sometimes an open surgery is required 

to access the tissue in question.  1.6 million breast biopsies are performed annually in 

the U.S.  Of those, approximately 5% (80,000) require an open biopsy (Shockney, L., 

2009). 

We do not anticipate selling any new devices for this market.  Current customers 

would use their existing surgical systems to perform surgical biopsies.  One local 

collaborator, Henry Ford Hospital, performs 48,000 breast procedures annually ("Breast 
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Cancer," 2010).  Assuming each of our collaborators performs approximately the same 

amount of procedures, and 3% of those are surgical biopsies, we predict (48,000 

procedures * 5 systems * .03 of cases) 7,200 biopsies performed in year one at $10 

diagnostic fee per case, for an additional revenue of $120,000 in breast biopsy cases 

alone.  As long as a breast biopsy database exists, there would be minimal overhead 

cost in this market, as users would be paying for database lookup only. 

9.6.2 Laboratory-Based In-Vitro Diagnostics 

The global in-vitro market is expected to grow to $8 billion annually in 2012, with 

11% annual growth ("Global cancer diagnostics market to reach $8B by 2012 ", 2008).  

The market increase is partially due to increased emphasis on cancer screening and 

early detection, as well as improved treatment methodologies, allowing cancer to be 

treated more like a chronic disease.   

Design of a laboratory-use Raman spectrometer is actually much simpler than 

design of a handheld surgical system.  Theoretically, the current probe design could be 

adapted for laboratory use, and sold at the same price of $10,000.  We would sell per-

use diagnostic software, with a detailed diagnosis including tumor aggressiveness (etc) 

for an additional $10. 

If only breast biopsy samples are included in the analysis, there are 1.6 million 

annual cases.  Assuming only growth with known collaborators in the first year 

(DMC/Karmanos, Henry Ford, U of M, U of Chicago, etc) in the first year, we can expect 

to sell 5 systems in year one, with growth growing exponentially after that.  One local 

collaborator, Henry Ford Hospital, performs 48,000 breast procedures annually ("Breast 

Cancer," 2010).  Assuming each of our collaborators performs approximately the same 
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amount of procedures, and assuming 10% of biopsy samples are tested with Raman 

spectroscopy, this equates to (48,000*.10*5)  24,000 biopsies in year one.  We assume 

that 30% (7200) of those samples would be positive for breast cancer and would require 

in depth Raman diagnosis.  The total revenue, then, in the first year would be 

 

Item Cost Number Revenue 
Laboratory systems $10,000 5 $50,000 
General biopsy diagnosis $10 24,000 $240,000 
In-depth Raman Diagnosis $10 7,200 $72,000 
Total   $362,000 
Table E.4 : Potential first-year revenue from pathology laboratory-based systems for 
breast cancer 
 
 

This model poses minimal overhead costs.  Development of laboratory systems 

should be simpler and quicker than development of portable systems.  Conversely, a 

portable surgical system could be sold with a stationary mounting system and used as-

is.  The only other cost involved would be development and maintenance of diagnostic 

database systems.  Furthermore, this laboratory system could easily be expanded to 

other types of cancer simply through sample testing and database development. 

This model assumes about 4,800 biopsies per year per institution, which may be 

a slight over-estimation for what a normal hospital would see.  Assuming (50 weeks * 5 

working days) 250 working days per year for biopsies (overnight hospitalization is not 

normally required, so procedures are more commonly performed on Fridays), this 

equates to 19 biopsies per day.   

Our 5 year model will assume a more reasonable 5 biopsies per day per 

institution, or 1,250 cases annually per institution.  Since the biopsy market is actually 
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larger than the tumor resection market, we can estimate that the same number of units 

or more will be adopted for lab use as for surgical use. 

 

 Year 1 Year 2 Year 3 Year 4 Year 5 
Units Sold 5 45 50 75 75 

Total Units in the Market 5 50 100 175 250 

Procedures Performed  
1250 cases / unit / year 

6,250 62,500 125,000 218,750 312,500 

           

Unit Revenue $50,000  $440,000  $500,000  $750,000  $750,000  

Diagnostic Revenue $62,500  $625,000  $1,250,000  $2,187,500  $3,125,000  

Total Annual Revenue $112,500  $1,065,000  $1,750,000  $2,937,500  $3,875,000  

Cumulative Revenue $112,500  $1,177,500  $2,927,500  $5,865,000  $9,740,000  

      

Annual Surgical Revenue* $83,350  $773,500  $1,167,000  $1,917,250  $2,417,500  

Cumulative Surgical Revenue* $83,350  $856,850  $2,023,850  $3,941,100  $6,358,600  

      

Total Annual Revenue $195,850  $1,838,500  $2,917,000  $4,854,750  $6,292,500  

Total Cumulative Revenue $195,850  $2,034,350  $4,951,350  $9,806,100  $16,098,600  

* Taken from Table E.3 
Table E.5 : Five-year revenues for laboratory-based diagnostics and surgical diagnostics 
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ABSTRACT 
 

IDENTIFICATION OF NEUROBLASTOMA AND ITS PROGNOSTIC MARKERS 
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Major: Biomedical Engineering 

Degree:  Doctor of Philosophy 

Introduction: Neuroblastoma is the most common cancer of infancy.  It is one of 

several peripheral nervous system tumors, including ganglioneuroma, peripheral nerve 

sheath tumor, and pheochromocytoma.  It is commonly situated on the adrenal gland.  It 

displays similar histology to other small round blue cell tumors, including non-Hodgkin 

lymphoma, rhabdomyosarcoma, and Ewing sarcoma.  One method of judging 

neuroblastoma aggressiveness uses tumor histology factors, including mitosis-

karyorrhexis index, Schwannian stromal development, degree of differentiation, and 

patient age.  Tumor aggressiveness can also be judged based on the amplification of 

certain genes, including MYCN.  Raman spectroscopy is a physics-based method which 

identifies the biochemical fingerprint of a sample.  It has recently been applied to 

disease classification, specifically in adult cancers. 

Methods:  To identify neuroblastoma from adrenal gland, peripheral nervous 

system tumors, and small round blue cell tumors, and to identify tumor histology, fresh 

and frozen samples were collected from the operating room and tested with Raman 

spectroscopy.  Tissues were assigned a ‘gold standard’ diagnosis by experienced 
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pediatric pathologists.  Tumor histology was further evaluated with blinded tissues 

provided by the Children’s Oncology Group.  To test identification of gene amplification, 

the tet-on MYCN-3 cell line was cultured in the presence and absence of tetracycline to 

induce or repress MYCN gene expression.  Cells were harvested and tested with 

Raman spectroscopy and polymerase chain reaction.  All Raman spectra were 

preprocessed and classified with discriminant function analysis. 

Results:  Raman spectroscopy identified neuroblastoma from healthy adrenal 

gland, peripheral nervous system tumors, and small round blue cell tumors with 100% 

sensitivity and specificity.  It identified favorable, unfavorable, and treated 

neuroblastoma with high accuracy.  Neuroblastoma cells with and without MYCN 

amplification were identified with 100% sensitivity and specificity. 

Conclusions:  This is the first study applying Raman spectroscopy to identify 

pediatric tumors, and the first blinded Raman spectroscopy study performed in 

collaboration with the Children’s Oncology Group, a national tumor bank.  It provides the 

first in-depth examination of specific markers of aggressiveness, including tumor 

favorability and MYCN gene amplification.  Raman spectroscopy has the potential to 

revolutionize the field of cancer diagnostics.  It can provide a detailed, accurate 

diagnosis in minutes instead of days. 
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